AC78xx Motor Debug Guide

文档版本: 2.3

发布日期: 2023-03-13

© 2013 - 2023 杰发科技

本文档包含杰发科技的专有信息。未经授权,严禁复制或披露本文档包含的任何信息。 由于产品版本升级或其他原因,本文档内容会不定期进行更新。

修订信息

版本	日期	作者	修订说明
1.0	2019-05-20	ATC	文档初版
2.0	2021-05-06	ATC	优化文档结构
2.1	2021-08-02	ATC	支持 ATC Motor Studio,支持 IAR EWARM
2.2	2022-02-22	ATC	更新算法参数,增加参考文档链接
2.3	2023-03-13	ATC	增加 AC7840x 开发板及 BLDC 常见调试问题说明

版权声明

本文档包含 AutoChips 公司的机密信息。禁止未经授权使用或披露本文档包含的信息。对因未经 AutoChips 公司授权而全部或部分披露此文档内容而给 AutoChips 公司带来的任何损失或损害, AutoChips 公司将追究责任。

AutoChips 公司保留对此处任何信息进行更改的权利,此处的信息如有变更,恕不另行通知。 AutoChips 公司对使用或依赖此处包含的信息不承担任何责任。

本文档的所有信息均"按原样"提供,不提供任何形式的明示,暗示,法定或其他形式的保证。 AutoChips 公司明确拒绝对适销性,非侵权性和针对特定用途的适用性方面的的所有暗示保证。 AutoChips 公司对本文档可能使用、包含或提供的任何第三方软件不提供任何担保,并且用户同意仅 向该等第三方寻求与此相关的任何担保索赔。AutoChips 公司对于根据用户规格或为符合特定标准或 公开论坛而产生的任何交付物,也不承担任何责任。

文档目录

修订	╞息		2					
版权)	^吉 明							
文档	文档目录4							
插图	目录		6					
表格	目录							
1	简介							
	1.1	本文目的						
	1.2	电机 Den	no 板硬件介绍					
		1.2.1	硬件说明					
		1.2.2	接口描述10					
		1.2.3	算法支持15					
2	MCU	仿真软件	环境搭建16					
	2.1	MCU 开发	发环境准备16					
	2.2	工程及仿	真器配置16					
	2.3	软件路径						
	2.4	模块初始	化					
3	适配	文件修改.						
	3.1	电机参数	适配					
	3.2	电路板参	数适配					
	3.3	算法参数	适配24					
		3.3.1	FOC 控制算法参数适配					
		3.3.2	BLDC 参数适配					

4	调试			62
	4.1	带霍尔传	感器 BLDC 调试	. 62
	4.2	无感 BLI	DC 调试	. 64
	4.3	感器 FOC 调试	. 66	
	4.4	带正交编	码器 FOC 调试	. 68
	4.5	带 Hall 何	专感器与 AB 编码器 FOC 调试	. 69
	4.6	无感 FOO	〕调试	. 70
		4.6.1	无感 FOC 滑模观测器调试	. 70
		4.6.2	无感 FOC 磁链观测器调试	. 73
		4.6.3	无感 FOC MRAS 观测器调试	.74
	4.7	母线电流	估算调试	. 75
	4.8	电机参数	识别	. 76
	4.9	Hall 传感	器自学习	. 77
	4.10	使用 Mot	or Studio 调试电机	. 77
5	典型	问题		79
	5.1	电路硬件	相关配置计算	. 79
	5.2	参数标幺	值、实际值对应关系说明	. 81
	5.3	无传感 F	OC 无法顺利切换闭环问题	. 82
6	缩略i	五		84
7	参考	资源		85

插图目录

冬	1-1 AC781x 电机 Demo 板硬件图	.9
冬	1-2 AC780x 电机 Demo 板硬件图	.9
图	1-3 AC7840x 电机 Demo 板硬件图1	10
图	1-4 Demo 板与电机连接图1	12
冬	2-1 MotorApp 文件结构1	17
冬	4-1 带霍尔的 BLDC 调试流程图	62
冬	4-2 无感 BLDC 调试流程图	65
冬	4-3 带霍尔的 FOC 调试流程图	67
冬	4-4 正交编码器 FOC 调试流程图6	68
冬	4-5 霍尔传感器与 AB 编码器模式调试流程图	70
冬	4-6 无感 FOC 滑模观测器调试流程图	71
冬	4-7 滑模观测器参数合理估算效果图	73
冬	4-8 Motor Studio 界面	78
图	4-9 ATC Motor Studio 调试电机流程图	78
图	5-1 U 相电流采样原理图	79
图	5-2 母线电压分压原理图	80
图	5-3 Debug 电路滤波原理图	81

表格目录

表 1-	1 AC780x/ AC781x 系列电机 Demo 板 IDC 总线定义	10
表 1-	2 AC7840x 系列电机 Demo 板总线定义	13
表 1-	3 电机 Demo 板支持算法类型	15
表 3-	1 电机参数宏定义适配表	19
表 3-2	2 电路板参数宏定义适配表	21
表 3-	3 FOC 算法和六步方波 BLDC 控制算法的差异点	24
表 3-	4 FOC 算法参数宏定义适配表	25
表 3-	5 方波算法参数宏定义适配表	54
表 4-	1 PWDT 模块 pinmux 定义	63
表 5-	1 无感 FOC 无法进入闭环的原因及对应解决方法	82
表 6-	1 术语缩写	84
表 7-	1 相关资源简介	85

1 简介

1.1 本文目的

本文主要目的是为了介绍如何使用 AutoChips 公司电机 Demo 板进行电机控制。用户在 Demo 板上进 行电机控制调试时,通过在 Demo 板程序上进行适配修改,可快速实现各型电机的控制开发工作。

1.2 电机 Demo 板硬件介绍

1.2.1 硬件说明

AutoChips 公司 Demo 板的分布方式有两种:隔离式和叠层式。其中隔离式指的是将 MCU 弱电与电机 驱动强电分区(两块独立 PCB)隔离,采用总线接口连接。隔离式 Demo 板中将弱电分布于 MCU 控制 板,将强电分布于功率驱动板。叠层式分布指的是上下两块 PCB 采用叠加连接形式。叠层式 Demo 板 将 MCU 最小系统独立出来置于上层(简称 MCU 板),其余部分则置于下层成为基板(强电与弱电隔离通 过 PCB 的 Layout 设计保证)。叠层式的优点为可兼容更多 MCU 系列,例如 AC780x 系列 MCU 板与 AC7840x 系列 MCU 板可共享同一基板,便于用户在不同 MCU 系列之间切换使用。

AC780x 和 AC781x 系列电机 Demo 板均采用隔离式分布,由 MCU 控制板和功率驱动板两块板组成,两块板之间使用 34-PIN 的 IDC 排线相连。

- MCU 控制板模块包括 JTAG Debug 接口, CAN / LIN / UART / SPI 通讯接口, 以及电机的 Hall 输入/编码器输入接口。
- 驱动功率板主要包括功率管供电输入、功率管预驱电路、功率 MOS 管以及 UVW 3 相电机线输出; 功率管供电电源的输入范围为≤ 60V。

AC780x 和 AC781x 系列 Demo 板实物如图 1-1 及图 1-2 所示:

通用版

图 1-1 AC781x 电机 Demo 板硬件图

图 1-2 AC780x 电机 Demo 板硬件图

AC7840x 系列电机 Demo 板采用叠层式分布,由 AC7804x 系列 MCU 板和基板两块 PCB 组成,上下 两块板之间采用两个标准的 2.54 双排针(32-PIN)叠加相连。AC7840x 系列 Demo 板对外通信,传感器 信号采集等接口均分布于基板之上,实物如图 1-3 所示:

通用版

图 1-3 AC7840x 电机 Demo 板硬件图

1.2.2 接口描述

1.2.2.1 AC780x 和 AC781x 系列接口

对于 AC780x 和 AC781x 系列电机 Demo 板,其 MCU 控制板和功率板的 12V 输入只需接一路即可,如果电机额定电压为 12V,那么将功率板中的功率管供电模式选择跳点(靠近 D5)短接即可,不需要再额外供电;如果电机的额定电压大 12V,那么功率板就需要单独供电;需要将功率板上的功率管供电模式选择跳点(靠近 D5)断开,电机驱动电源从 J15 端输入。功率管供电模式选择跳点在 Demo 板上详细 位置请参见图 1-1。

AC781x 与 AC780x 系列电机 Demo 板 MCU 控制板和功率板之间的 IDC 总线接口定义及连接关系一致,详细定义如表 1-1 所示。

控制板总线 J2 引脚编号	控制板接口信号定义	功率板总线 J16 引脚编号	功率板接口信号定 义	连接信号备注	
1	ADC_IN4	34	XADC_IN4	ADC 通道 4, 采 A 相电流	

表 1-1 AC780x/ AC781x	系列电机 Demo	板 IDC	总线定义
----------------------	-----------	-------	------

控制板总线 J2 引脚编号	控制板接口信号定义	功率板总线 J16 引 脚编 号	功率板接口信号定 义	连接信号备注	
2	ADC_IN5	33	XADC_IN5	ADC 通道 5,采 B 相电流	
3	ADC_IN3	32	XADC_IN3	ADC 通道 3,采C相反电动势	
4	ADC_IN6	31	XADC_IN6	ADC 通道 6,采C相电流	
5	ADC_IN2	30	XADC_IN2	ADC 通道 2, 采 C 相反电动势	
6	ADC_IN7	29	XADC_IN7	ADC 通道 7,采母线电流	
7	ADC_IN1	28	XADC_IN1	ADC 通道 1,采 B 相反电动势	
8	ADC_IN8	27	XADC_IN8	ADC 通道 8, 采母线电压	
9	ADC_IN0	26	XADC_IN0	ADC 通道 0, 采 A 相反电动势	
10	ADC_IN9	25	NC	预留,未连接	
11	DGND	24	DGND	数字地	
12	DGND	23	DGND	数字地	
13	VDD	22	M2_VDD	控制板 5V 供电	
14	VDD	21	M2_VDD	控制板 5V 供电	
15	DGND	20	DGND	数字地	
16	DGND	19	DGND	数字地	
17	PWM0_CH0	18	NC	预留,未连接	
18	PWM_FAULT1	17	XPWM_FAULT1	过流检测故障	
19	PWM0_CH1	16	NC	预留,未连接	
20	SPI2_SCK	15	NC	预留,未连接	
21	SPI2_MISO	14	NC	预留,未连接	
22	SPI2_MOSI	13	NC	预留,未连接	

杰发科技机密文件

控制板总线 J2 引脚编号	控制板接口信号定义	功率板总线 J16 引脚编号	功率板接口信号定 义	连接信号备注
23	UART5_TX	12	NC	预留,未连接
24	PWM2_CH4	11	PWM2_CH4	PWM2 通道 4 输出
25	UART5_RX	10	NC	预留,未连接
26	PWM2_CH5	9	PWM2_CH5	PWM2 通道 5 输出
27	DGND	8	DGND	数字地
28	PWM2_CH0	7	PWM2_CH0	PWM2 通道 0 输出
29	DGND	6	DGND	数字地
30	PWM2_CH1	5	PWM2_CH1	PWM2 通道 1 输出
31	B+12V	4	M2_12V	12V 输入电压
32	PWM2_CH2	3	PWM2_CH2	PWM2 通道 2 输出
33	B+12V	2	M2_12V	12V 输入电压
34	PWM2_CH3	1	PWM2_CH3	PWM2 通道 3 输出

以 57BL55S06 电机为例,电机与 Demo 板之间的接线在 AC781x 电机 Demo 板和 AC780x 电机 Demo 板上是一致的,接线方法如图 1-4 所示。

图 1-4 Demo 板与电机连接图

其中,电机端出线分两部分,一部分为电机三相驱动线 3 根,UVW 三相依次接 Demo 板 J17 接口上面的 U,V,W 端口;另一部分为霍尔工作接口共 5 根线,分别为 Hall_W、Hall_V、Hall_U、GND、VDD,依次接 Demo 板 J5 接口上第 1、2、3、4、5 号引脚。

1.2.2.2 AC7840x 系列接口

autochips

对于 AC7840x 系列电机 Demo 板,其唯一供电输入接口位于基板 J1 端口,输入电压范围 12V~60V,在 Demo 板上详细位置请参见图 1-3。

AC7840x 系列 MCU 板和基板之间通过两个 32PIN 总线直插连接,其中 JP2 和 JP5 引脚对应一致, JP3 和 JP4 引脚对应一致,详细的总线接口定义如表 1-2 所示。

JP2 与 JP5 引 脚编号	信号定义	连接信号备注	JP3 与 JP4 引 脚编号	信号定义	连接信号备注
1	V_TEMP	Mos 温度采样 AD 信号	1	VDD	MCU 电源
2	VBUS	母线电压	2	VDD	MCU 电源
3	PWM3_CH0_ U+	PWM3 通道 0 输出,用 于 U 相上桥驱动	3	VDD	MCU 电源
4	PWM3_CH1_ U-	PWM3 通道 1 输出,用 于 U 相下桥驱动	4	GND	地信号
5	PWM3_CH2_ V+	PWM3 通道 2 输出,用 于 V 相上桥驱动	5	GND	地信号
6	PWM3_CH3_ V-	PWM3 通道 3 输出,用 于 V 相下桥驱动	6	GND	地信号
7	PWM3_CH4_ W+	PWM3 通道 4 输出,用 于 W 相上桥驱动	7	ADC_IN11	ADC 通道 11, 预留
8	PWM3_CH5_ W-	PWM3 通道 5 输出,用 于 W 相下桥驱动	8	ADC_IN10	ADC 通道 10, 预留
9	GND	地信号	9	Print_1	Debug 打印通道 1
10	GND	地信号	10	Print_2	Debug 打印通道 2

表 1-2 AC7840x 系列电机 Demo 板总线定义

JP2 与 JP5 引 脚编号	信号定义	连接信号备注	JP3 与 JP4 引 脚编号	信号定义	连接信号备注
11	IBUS_SUM	母线电流滤波信号	11	PWM_R2	PWM 输出通道,预留
12	IBUS	母线电流	12	JTAG_TDO	JTAG 仿真 TDO 信号
13	IBUS_CMP	过流检测信号	13	JTAG_TDI	JTAG 仿真 TDI 信号
14	IU_AD	U相电流 AD	14	SWD_CLK	JTAG 仿真时钟
15	IW_AD	V相电流 AD	15	NRST_1	MCU 硬件复位信号
16	IV_AD	W 相电流 AD	16	SWD_DIO	JTAG 仿真数据
17	GND	地信号	17	SPI1_SOUT	SPI1 数据输出端
18	GND	地信号	18	SPI1_CS0	SPI1 片选 0 信号
19	UART1_TX	串口1发送端	19	SPI1_SIN	SPI1 数据输入端
20	UART1_RX	串口1接收端	20	SPI1_SCK	SPI1 通信时钟
21	GND	地信号	21	SPEED_PWM	ADC 通道 0, 采 A 相反 电动势
22	GND	地信号	22	CAN_STB	CAN 通信 STB
23	Encode_A	正交编码器 A 相	23	CAN0_TX	CAN0 通信发送端
24	Encode_B	正交编码器 B 相	24	CAN0_RX	CAN0 通信接收端
25	Encode_Z	正交编码器归零信号	25	LIN_SLP	LIN 通信休眠信号
26	HALL_U	霍尔U相	26	PWM_R1	PWM 输入通道,预留
27	HALL_V	霍尔V相	27	GND	地信号
28	HALL_W	霍尔W相	28	UART0_TX	串口0发送端
29	BEMF_V	反电动势 V 相	29	GND	地信号
30	BEMF_U	反电动势 U 相	30	UART0_RX	串口 0 接收端

杰发科技机密文件

JP2 与 JP5 引 脚编号	信号定义	连接信号备注	JP3 与 JP4 引 脚编号	信号定义	连接信号备注
31	BEMF_W	反电动势W相	31	SPEED_AD	滑动变阻器调速 AD 采 样口
32	BEMF_MID	反电动势中性点	32	KEY_AD	按键 AD 采样口

1.2.3 算法支持

如表 1-3 所示,ATC 电机 Demo 板可以支持以下类型的电机的开发和调试。

表 1-3 电机 Demo 板支持算法类型

电机类型	控制方式	电压范围
带霍尔的 BLDC 控制	6步方波控制	$\leq 60 V$
无霍尔的 BLDC 控制	6步方波控制(使用反电动势)	$\leq 60 V$
带霍尔的 PMSM 控制	FOC	$\leq 60 V$
无霍尔的 PMSM 控制	无传感 FOC	$\leq 60 \mathrm{V}$
带编码器的 PMSM 控制	FOC	$\leq 60 V$
带编码器与霍尔的 PMSM 控制	FOC	$\leq 60 \mathrm{V}$
无传感器的异步电机控制	无传感 FOC	$\leq 60 \mathrm{V}$
带编码器的异步电机控制	FOC	$\leq 60 \mathrm{V}$

2 MCU 仿真软件环境搭建

2.1 MCU 开发环境准备

MCU 仿真软件采用 ARM 公司 Keil,用户可自行下载 Keil MDK Version 5 软件,并运行安装程序, 建议安装 v5.23 以上版本并避免使用 v5.30 版本(因 ARM Keil MDK v5.30 版本官方确认存在 bug)。

当前 Motor Demo 使用的 Keil 开发环境必须包括 CMSIS 安装包,用户可自行前往 AutoChips 官网下 载最新版本;安装包命名格式为 AutoChips.AC78xx_DFP.x.x.x.pack,其中"x.x.x"为版本号。

同时也支持 IAR Embedded Workbench for ARM (IAR EWARM V9.32.1 及以上版本),使用 IAR EWARM 的用户可参考 Autochips 官网电机例程。

2.2 工程及仿真器配置

在本地新建工程及工程模式配置,仿真器与 Demo 板之间的配置连接等详细操作,用户可参考官网软件 说明文件《AC781x 入门指南》或《AC780x 入门指南》。

2.3 软件路径

ATC MCU 电机控制算法的软件为 Motor_App.rar, 解压这个压缩包之后即可看到电机控制算法的软件 结构, 如图 2-1 所示。主要包括以下几个部分:

(1) Drivers:

Drivers 文件夹为 MCU 的驱动支持包,内含 ATC_Driver 与 Device 两个文件夹,分别是 Autochips AC78xx 系列 MCU 的驱动文件与启动文件。

(2) IAR-EWARM:

IAR-EWARM 文件夹是 IAR EW 的工程路径,其中包含电机控制算法 IAR 工程的 workspace 文件、Bldc_App 工程文件,以及支持 IAR EW 工程的 flashloader 文件夹。

(3) MDK-ARM:

MDK-ARM 文件夹是 MDK keil 的工程路径,其中包含电机控制算法 MDK 工程的 Bldc_App 与 Motor_App 工程文件。

(4) Motor-Master:

Motor-Master 文件夹是电机控制软件算法的文件路径,其中包含 Bldc、 Foc 与 User 三个文件 夹。

图 2-1 MotorApp 文件结构

Bldc 文件夹:内含 Bldc_App,是方波控制算法软件代码源文件的集合。

Foc 文件夹: 内含 Foc_App 与 Foc_Lib, 分别是矢量控制算法软件代码源文件集合以及电机算 法库。

User 文件夹:内分 Bldc 与 Foc,是对应控制算法下用户层功能代码源文件集合。

(5) Inc:

Inc 文件夹包含三个子文件夹: Bldc_Cfg、Foc_Cfg 与 Common_Cfg, 分别对应方波控制软件 算法配置、矢量控制软件算法配置,以及共用的硬件与电机参数配置文件。

- a) Bldc_Cfg: 内含 Bldc_parameters_define.h,用于配置方波控制算法软件的算法 参数。
- b) Foc_Cfg: 内含 drive_parameters_define.h,用于配置矢量控制算法软件的算法 参数; protector_parameters_define.h,用于配置矢量控制算法软件的保护功能 参数。

c) Common_Cfg: 内含 hwboard_parameters_define.h,用于配置电机控制板的硬
 件参数; motor_parameters_define.h,用于配置电机参数。

(6) Src:

Src 文件夹包含两个子文件夹: Bldc、Foc, 分别是方波控制软件算法与矢量控制软件算法代码 的 main 源文件。

2.4 模块初始化

电机控制算法需要用到 TIMER / PWM / PWDT / ADC / GPIO 等几个模块,需要分别对这些模块进行 初始化设置,详细可以参考《ATC_AC78xx _MotorApp_Development_Guide_CH》。

3 适配文件修改

3.1 电机参数适配

对于市场上种类繁多的电机,各厂家设计的电机参数都不尽相同,因此用户进行开发时必须清楚其技术 参数及基本测量方法,详细电机参数测量方法可参考《ATC 电机主要参数介绍及测量方法说明》。 Demo板中为了适应不同电机的应用,在 MotorApp 中对使用的电机参数进行了明确定义,用户可根据 电机的特性进行软件设置,适配不同电机应用开发。

如表 3-1 所示,对 motor_parameters_define.h 中定义的电机参数进行详细适配信息说明。

参数宏定义	参数名称	参数取值	获取方法	影响范围
STATOR_RS	电机定子绕阻 阻值	单位: mΩ	 1. 查阅电机参数手册 2. 用电桥在 100Hz 测试 	影响无感 FOC 模式下电 机模型的准确性及无感 观测运算
ROTOR_RS	电机转子绕阻 阻值	单位: mΩ	永磁同步电机转子绕组为0	影响异步电机控制
LS	电机定子相电感	单位: µH	 查阅电机参数手册 可用(LD+LQ)/2 填 无感 FOC 暂时未使 用,为预留 	影响无感 FOC 模式下电 机模型的准确性及无感 观测运算
LD	D轴电感	单位: µH	用电桥在 1kHz 测试两相间	
LQ	Q轴电感	单位: µH	电恋,褒侵旋转电机 圖。 LD 为最小电感值/2, LQ 最 大电感值/2	
LR	电机转子电感	单位: H	转子电感 LR 无法直接测 量,可用 LS 值近似代替	影响异步电机控制
LM	电机定转子互 感	单位: H	可用空载试验进行测量	
POLE_PAIR_N UM	电机极对数	≥1	 查阅电机参数手册 用公式推导极对数 p,用 示波器可测出相电流频率 f(Hz),用转速计可测出电 	影响电机转速转换,电 机转速的取值范围及电 机转速调速斜率

表 3-1 电机参数宏定义适配表

杰发科技机密文件

参数宏定义	参数名称	参数取值	获取方法	影响范围
			机转子转速 n(rpm),则可 由 n = 60 * f / p 推导出电机 极对数 p	
INERTIA	负载转动惯量	单位: 10E-7kg.m ²	 空载转动惯量可查阅电机 参数手册 通过其他设备拖动电机转 子,由拖动力矩和转子加速 度推算转动惯量 	影响 PID 运算参数的整 定和控制效果
VOLTAGE_CO NSTANT	电压常数	单位: V/krpm	 1. 查阅电机参数手册 2. 询问电机设计厂商 	电机的反电动势常数
MAX_CURRE NT	电机峰值电流	单位: A	查阅电机参数手册	电流标幺基值,一般设 置要大于电机实际运行 的最大相电流峰值
MAX_TORQUE	电机最大转矩	单位: mN m	1. 查阅电机参数手册 2. 询问电机设计厂商	转矩标幺基值,预留
MOTOR_MAX_ SPEED_RPM	电机最大转速	单位: rpm	查阅电机参数手册 及电机铭牌标识	转速标幺基值,需设置 大于电机实际运行的最 高转速,影响电机转速 转换,电机转速的取值 范围及电机转速调速斜 率
RATE_POWER	电机额定功率	单位: W	查阅电机参数手册 及电机铭牌标识	算法未使用,预留

3.2 电路板参数适配

Demo 板中为了适应不同电机的控制需求应用,在 Demo 板硬件电路上做了大量兼容设计。电机控制系统的实现需硬件电路和软件的配合工作,因此在 Demo 程序中需对硬件电路配置进行定义说明,确保程序配置与硬件状态统一。

如表 3-2 所示,对 hwboard_parameters_define.h 中定义的 Demo 板硬件电路参数进行详细适配信息 说明。

杰发科技机密文件

通用版

表 3-2 电路板参数宏定义适配表

参数宏定义	参数名称	参数取值	获取方法	影响范围
GATE_DRIVER_H IGH_HIGH / GATE_DRIVER_H IGH_LOW / GATE_DRIVER_L OW_HIGH / GATE_DRIVER_L OW_LOW	PWM 通道 输出极性与 逆变电路功 率器件预驱 极性	GATE_DRIVER_HIG H_HIGH: PWM 通道 输出极性为高有效,且 预驱的驱动极性与其相 同; GATE_DRIVER_HIG H_LOW: PWM 通道输 出极性为高有效,且预 驱将逆变电路下桥臂的 PWM 输出翻转; GATE_DRIVER_LOW _HIGH: PWM 通道输 出极性为低有效,且预 驱将逆变电路上桥臂的 PWM 输出翻转; GATE_DRIVER_LOW _LOW: PWM 通道输 出极性为低有效,且预	根据电路原理图中电机 驱动电路,查阅MOS管 及预驱动芯片手册。 AC78xx系列除AC781x 高压 demo 板默认打开 GATE_DRIVER_LOW _LOW 外,其余 demo 板 均 默 认 打 开 GATE_DRIVER_HIG H_HIGH。	表征 MCU 的 PWM 模 块通道输出极性与硬件 电路功率器件的预驱极 性的模式组合。 宏定义与实际硬件电路 不匹配时可能导致逆变 电路上下桥臂直通。 正式调试电机前必须确 认,同相上下桥不能同 时导通,否则功率电源 通过上下桥直接短路, 大电流可烧坏 MOS 电路
PHASE_UVW_PO LARITY	MCU 端 PWM 通道 输出极性	ACTIVE_HIGH: 三相 对应 PWM 通道输出极 性为上桥臂高有效导通 ACTIVE_LOW: 三相 对应 PWM 通道输出极 性为上桥臂上桥低有效 导通	根据电路原理图中电机 驱动电路,查阅MOS管 及预驱动芯片手册	影响 PWM 模块通道配 置。配置错误可能导致 与功率器件预驱的错误 配合,使逆变电路上下 桥臂直通。正式调试电 机前必须确认,同相上 下桥不能同时导通,否 则功率电源通过上下桥 直接短路,大电流可烧 坏 MOS 电路
HW_DEAD_TIME _NS	功率器件驱 动电路死区 时间	单位: ns	根据电路原理图中电机 驱动电路,查阅MOS管 及预驱动芯片手册	影响功率器件导通时间

参数宏定义	参数名称	参数取值	获取方法	影响范围
SW_DEAD_TIME _NS	PWM 模块 通道死区时 间	单位: ns,取值范围 0~10500	查询芯片手册	影响死区插入的时间长 短,默认4分频设置, PWM死区时间插入控 制寄存器计数值最大为 63,系统主频越高,允 许的最大死区时间插入 值越小。
				= (4 * 63 / PWM_CLK)
				其中 PWM_CLK 单位 为 1000Mhz,因此:
				AC780x 允许值为 10500ns; AC781x 允 许值为 5250ns; AC7840x 允许值为 2100ns。
SAMPLE_TRIG_E DGE	单电阻采样 触发边沿选 择	0: 上升沿触发 1: 下降沿触发	根据单电阻采样调试效 果设置数值	影响单电阻采样,当 PWM 频率较高时,上 升沿触发采样可能异 常,导致 FOC 无法重构 三相电流
SAMPLE_HOLD_ TIME	单电阻采样 保持时间	单位: ns, 0~10000	根据单电阻采样调试效 果设置数值	影响单电阻采样:设置 过大会使电流采样失
SAMPLE_RISE_T IME	单电阻采样 上升时间			效,影响电机控制;设置过小会导致无法进行 电流采样
VBUS_ATTENUA TE_FACTOR	母线电压分 压系数	常数: >1	查阅电路原理图中母线 电压采样配置并分析其 分压系数	影响母线电压采样的结 果
MAX/MIN_BUS_V OLTAGE	电机控制器 母线电压最 大/小值	单位: V	根据电机控制器母线电 压及功率电路器件耐压 能力设置最大母线电 压;根据电机控制的需 求设置最小母线电压	设置不合理可能导致电 压保护的漏报或误报, 影响过压和欠压监测保 护策略实现。最大母线 电压设置过高有硬件损 坏的风险,过低则在正 常驱动电机时易误报过

参数宏定义	参数名称 参数取值 获取方法		获取方法	影响范围	
				压故障;最小母线电压 设置过高易误报欠压故 障,过低则会在母线电 压过低而不能正常驱动 电机时无法报出欠压故 障	
NORMAL_BUS_V OLTAGE	电机控制器 母线电压正 常值	单位: V	查阅电路原理图中功率 MOS管驱动部分	电压标幺基值,一般设 置为电机实际运行中的 最大允许母线电压,若 设置较小会导致输出能 力受限	
CUR_SAMPLE_M ODE	电机三相电流采集方式	ICS_SENSORS_SAM PLE: 电流传感器采样 SINGLE_SHUNT: 单 电阻采样 TWO_SHUNT_SAMP LE: 双电阻采样 THREE_SHUNT: 三 电阻采样	查阅电路原理图中电机 相电流采样电路	影响调试中调用的相电 流采样配置方法及相电 流的读取	
RSHUNT	采样电阻阻 值	单位:Ω	查阅电路原理图中电机 相电流采样电路	影响运放 AD 采样相电 流精度和结果	
ICS_GAIN	电流传感器 增益	单位: V/A	查阅电路原理图中电机 相电流采样电路		
OP_AMPLIFICAT ION_GAIN	电流采样运 放增益	常数: >1	查阅电路原理图中电机 相电流采样电路运放硬 件配置,并分析计算其 运放增益		
HW_MAX_CURR ENT	硬件最大电流	单位: A	根据硬件设计及功率器 件规格进行设置	影响电机控制器安全运 行(软件暂未使用该参 数,当前仅起提示作 用)	
ADC_RANGE	ADC 采样 范围	4096	ADC 为 12Bit 分辨率	影响相电流,母线电流,母线电流,母线电压等需 ADC	

参数宏定义	参数名称	参数取值	获取方法	影响范围
VSVREF	ADC 采样 参考电压	单位: V	 1.查阅电路原理图中 MCU_AVDD网络电压 2.控制板通电后用万用 表直接测量 MCU_AVDD电压 	采样的信号采样精度以及闭环运算标幺
OVERCUR_FEED BACK_POLARITY	过流保护极 性	PWM_INPUT_POLAR ITY_ACTIVE_HIGH/L OW	查阅电路原理图	影响硬件过流保护

表 3-2 中 PWM 通道输出极性与逆变电路功率器件预驱极性设置,同时只能打开其中一个宏定义, 并关闭其他三个宏定义配置。

3.3 算法参数适配

Demo 板中为了适应不同电机的控制需求应用,在 Demo 板软件中开发了控制算法: FOC 算法与六步 方波 BLDC 控制算法。表 3-3 列出了两种算法的差异点。

差异点	FOC 算法	六步方波 BLDC 控制算法
工程名	Motor_App	Bldc_App
算法构成	App 文件+算法库	App 文件
算法特点	针对交流电机,基于 SVPWM 算法	针对 BLDC 电机,方波换向

表 3-3 FOC 算法和六步方波 BLDC 控制算法的差异点

3.3.1 FOC 控制算法参数适配

表 3-4 列出了 drive_parameters_define.h 中定义的算法参数,主要用于运行 FOC 算法时各算法模块的选择配置说明。

表 3-4 FOC 算法参数宏定义适配表

参数宏定义	参数名称	参数取值	参数配置	影响范围
DATA_ACCESS_FLASH _ENABLE	参数固化 Flash 功能使能开关	无	打开或屏蔽	影响 flash 固化、恢复参 数功能的使用
FOC_SINE_WAVE	正弦波矢量控制	无	打开或屏蔽	影响电机控制方式
FOC_PMSM	PMSM 矢量控制	无	打开或屏蔽	影响电机控制方式
FOC_ACIM	异步电机矢量控 制	无	打开或屏蔽	影响电机控制方式
SENSORLESS	无速度传感器矢 量控制	无	打开或屏蔽	影响 PMSM 电机控制方 式
HALL_SENSORS	带 Hall 传感器矢 量控制	无	打开或屏蔽	
ENCODER_SENSORS	带编码器矢量控 制	无	打开或屏蔽	
ENCODER_HALL_SENS ORS	编码器与 Hall 传 感器矢量控制	无	打开或屏蔽	
SENSORLESS_ACIM	无速度传感器矢 量控制	无	打开或屏蔽	影响异步电机控制方式
SENSOR_ACIM	有 速 度 传 感 器 (编码器)的矢 量控制	无	打开或屏蔽	
VF_CONTROL	V/f 控制方式	无	打开或屏蔽	影响电机控制方式
IF_STARTUP	矢量控制开环 IF 启动	无	打开或屏蔽	影响无传感矢量控制开 环启动方式
VF_STARTUP	矢量控制开环 VF启动	无	打开或屏蔽	
DIRECT_STARTUP	矢量控制开环直 接启动	无	打开或屏蔽	

参数宏定义	参数名称	参数取值	参数配置	影响范围
CLOSE_TO_OPEN_SWI TCH	无感 FOC 闭环- 开环切换	无	打开或屏蔽	影 响 PMSM 无 感 FOC,打开后无感 FOC 可从闭环切换到开环再 回到闭环运行
SPEED_DELAY_ZONE	闭环-开环切换速 度滞环宽度	0~Math_IQ(1.0)	根据实际电机系 统设置	影响无感 FOC 闭环-开 环切换区间
SMC_OBSERVE	滑模观测器无传 感矢量控制	无	打开或屏蔽	影响无传感矢量控制方 式
FLUX_OBSERVE	磁链观测器无传 感矢量控制	无	打开或屏蔽	
MRAS_OBSERVE	电流自适应观测 器无传感矢量控 制	无	打开或屏蔽	
ATAN_ANGLE_ESTIMA TION	反正切法估算电 角度	无	打开或屏蔽	影响无传感矢量控制电 角度的获取方式
PLL_ANGLE_ESTIMATI ON	锁相环法估算电 角度	无	打开或屏蔽	
ALIGNMENT_ONCE	一次预定位	无	打开或屏蔽	影响电机初始角度获取
ALIGNMENT_TWICE	二次预定位	无	打开或屏蔽	刀式
PULSE_INJECTION	脉冲注入辨识初 始位置	无	打开或屏蔽	
PULSE_INJECTION_TI MES	脉冲注入辨识次 数	1~5	脉冲注入辨识初 始位置执行次数	
INIT_POS_DETEC	初始位置检测	无	打开或屏蔽	
HIGH_FREQUENCE_IN JECTION	高频注入	无	打开或屏蔽	影响电机初始角度获取 方式;使用时需要屏蔽 无传感矢量控制开环启 动的三种模式: IF/VF/DIRECT_STAR TUP,及

参数宏定义	参数名称	参数取值	参数配置	影响范围
				CLOSE_TO_OPEN_S WITCH
MOTOR_POLES_OBTAI N	辨识电机极对数	无	打开或屏蔽	打开后可用于识别电机 极对数
VOLTAGE_RESTRUCT	电压重构	无	打开或屏蔽	影响观测器电压选择
OPEN_LOOP	开环控制	无	打开或屏蔽	影响 FOC 控制方式
CLOSE_LOOP	闭环控制	无	打开或屏蔽	
OVER_MODULATION	SVPWM 过调制	0: 禁用 1: 使能	根据控制中是否 需 要 使 用 SVPWM 过调制 功能,来进行参 数配置	影响 SVPWM 算法
SVPWM_SEGMENT_TY PE	SVPWM 模式	SEVEN_SEGME NT : 七段式 SVPWM FIVE_SEGMEN T : 五段式 SVPWM	根据控制中是否 需要使用五段式 SVPWM 进行选 择,默认七段式	
PWM_FREQ_SETTING	PWM 计数频率	单位: Hz	默认 8000	影响 FOC 执行频率
PWM_PRSC	PWM 分频系数	单位:1	默认 0	影响 PWM 模块配置
PWM_MODE_SELECT	PWM 计数模式 选择	PWM_COUNT_U P_MODE: 增计 数模式 PWM_COUNT_U P_DOWN_MODE : 增减计数模式	根据用户算法需 求进行设置	
FOC_EXECUTION_RAT E	FOC 执行频率倍率	单位: 1	根据用户算法需 求进行设置为 1 或 2	影响 FOC 执行频率
FOC_FERQ	FOC 执行频率	单位: Hz	根据用户配置自 动计算	

参数宏定义	参数名称	参数取值	参数配置	影响范围
FPWM_Hz	PWM 计数频率	单位: Hz	根据用户配置自 动计算	影响 PWM 频率
FTBS_Hz	速度环计算频率	单位: Hz	根据用户配置自 动计算	影响速度环时基
FTBC_Hz	电流环计算频率	单位: Hz	根据用户配置自 动计算	影响电流环时基
PWM_FREQ_K	电流环毫秒系数	单位:1	根据用户配置自 动计算	影响电流环计时
MS_UINT_INT	电流环毫秒时基	单位: ms	根据用户配置自 动计算	影响电流环毫秒时基计 时
PWDT_CLK_PRESCALE R	PWDT 时钟分频 系数	单位: 1	根据 Hall 算法需 求进行配置	影响 Hall 信号滤波
PWDT_FILTER_PSC	PWDT 输入信号 滤波器时钟分频	单位: 1	根据 Hall 算法需 求进行配置	
PWDT_FILTVAL	PWDT 输入信号 滤波系数	单位: 1	根据 Hall 算法需 求进行配置	
ELEC_FREQUENCE_HI GH	无传感FOC频率 计算中断执行使 能标志	无	打开或屏蔽	影响反正切角度计算执 行频率
ELEC_FREQUENCE_LO W	无传感 FOC 频率 计算 1 毫秒执行 使能标志	无	打开或屏蔽	
ATAN_SPEED_FILT_H	无传感 FOC 频率 计算中断执行反 正切法滤波系数	0~Math_IQ(1.0)	反正切法速度环 滤波系数,数值 越大则滤波程度 越大	根据反正切法速度环计 算执行频率选择参数设 置
ATAN_SPEED_FILT_L	无传感 FOC 频率 计算 1 毫秒执行 反正切法滤波系 数	0~Math_IQ(1.0)	反正切法速度环 滤波系数,数值 越大则滤波程度 越大	

参数宏定义	参数名称	参数取值	参数配置	影响范围
MT_SPEED_MEASURE	M_T 测速法	无	打开或屏蔽	打开后可用于正交编码 器 M_T 法测速
T_METHOD_HZ	T 测速法脉冲源 频率	单位: Hz	默认 10000	影响测量转速分辨率
DAC_FUNCTIONALITY	DAC 调试功能使 能标志	无	打开或屏蔽	影响在线调试功能
DAC_PWM	使用 PWM 作为 DAC 输出使能标 志	ENALBE: 使能 DISABLE: 禁止	使用 PWM 模块 作为调试输出时 使能	
DAC_SPI	使用 SPI 作为 DAC 输出使能标 志	ENALBE: 使能 DISABLE: 禁止	使用 SPI 连接外 接 DAC 模块作 为调试输出时使 能	
DEBUG_DAC_CH0	DAC 调试输出通 道 0 使能标志	ENALBE: 使能 DISABLE: 禁止	使用通道 0 时使 能	
DEBUG_DAC_CH1	DAC 调试输出通 道 1 使能标志	ENALBE: 使能 DISABLE: 禁止	使用通道 1 时使 能	
DEBUG_DAC_CH0_PAR AMID	DAC调试输出通 道0参数码	0~255	默认值 157	
DEBUG_DAC_CH1_PAR AMID	DAC 调试输出通 道1参数码	0~255	默认值 158	
USE_GPIO_CALCULAT E_FOC_RUNTIME	使用 GPIO 测量 程序执行时间使 能标志	无	需要测量代码执 行时长时打开宏 定义	影响测量程序代码执行 时长
SPEED_ADJUST_KEY	按键调试使能标 志	无	打开或屏蔽	影响速度指令设置方 式。
SPEED_ADJUST_KNOB	电位器调速使能 标志	无	打开或屏蔽	二者互斥,对于确定的 调速方式,需要关闭另 一项

参数宏定义	参数名称	参数取值	参数配置	影响范围
MOTOR_CONTROL_MO DE	电机控制模式选 择	TORQUE_CONT ROL_WITH_SPD LIMIT:有速度限 幅的转矩控制	根据用户需求进 行设置	影响电机控制算法
		SPEED_CONTR OL_MODE:速度 控制		
TORQUE_MODE_IQ_AD D_STEP	转矩模式转矩电 流指令步距	单位: A/ms	根据用户需求进 行设置	影响转矩模式
TOREQU_MODE_IQ_C MD_MAX	转矩模式转矩电 流指令上限	0~Math_IQ(1.0)	根据用户需求进 行设置	
TOREQU_MODE_IQ_C MD_MIN	转矩模式转矩电 流指令下限	0~Math_IQ(1.0)	根据用户需求进 行设置	
VDQ_CIRCLE_LIMIT_C TRL	输出电压限幅使 能标志	无	打开或屏蔽	影响电压输出
VDQ_LIMIT_VALUE	输出电压限幅值	0~Math_IQ(1.0)	根据用户需求进 行设置	影响电压输出
SPEED_CHANGE_STEP	速度斜坡变化率	单位: Hz	根据客户需求进 行设置	影响速度指令斜坡变化 率
MAX_SPEED_VALUE	最大运行转速	单位: Hz	根据客户电机参 数进行设置	影响电机运行速度范围
MIN_SPEED_VALUE	最小运行转速	单位: Hz	根据客户需求进 行设置	
STOP_SPEED_VALUE	停机转速	单位: Hz	根据 STOP_SPEED_ HZ的值自动计 算	影响减速停机功能
ACCELERATION_RPS	单次加速调速斜 率	单位: rpm/s	根据用户调速需 求进行设置。需 西调速响应快则	影响电机调速过程中速 度变化的快慢
DECELERATION_RPS	单次减速调速斜 率		增大参数	

参数宏定义	参数名称	参数取值	参数配置	影响范围
OPEN_LOOP_SPEED_H Z	开环切换机械频 率	单位: Hz	无感 FOC 开环启 动频率设置	设置过低,观测器无法 有效观测估算转子电角 度,影响开环切 FOC 无 感控制过程
MAX_SYNC_SPEED_TH RES	开环至闭环切换 频率上限	单位:1	根据开闭环切换 效果进行设置	影响无感 FOC 开闭环切 换效果
MIN_SYNC_SPEED_TH RES	开环至闭环切换 频率下限	单位:1	根据开闭环切换 效果进行设置	
OPEN_LOOP_TIME_SY N	开环至闭环切换 时间	单位: ms	电机达到开环运 转转速后切入闭 环前稳定时间	影响电机开环切入闭环 时间
CUR_START_SUB	开环至闭环电流 缓降斜率	无	无感FOC开环启 动电流减速度设 置	影响开环切入闭环平顺 性
SPD_SMOOTH_CUR	开环启动平滑切 换电流	0~32767	根据无感FOC开 闭环切换效果进 行设置	影响开环切入闭环的平 顺性
DEFAULT_TARGET_FR EQ_START	开环启动默认目 标频率	根据开环频率自动 计算	根据 OPEN_LOOP_ SPEED_HZ的 值自动计算	影响无感 FOC 开闭环切 换频率
STOP_SPEED_HZ	停机机械频率	单位: Hz	根据用户需求进 行设置	影响减速停机功能
OPEN_LOOP_CURREN T	开环启动电流	Math_IQ(0) ~Math_IQ(1.0)	根据无感FOC开 环调试情况进行 设置	影响无感 FOC IF 开环 运行
OPEN_LOOP_VOLTAGE	开环启动电压	Math_IQ(0) ~Math_IQ(1.0)		影响无感 FOC VF 开环 运行
CURVE_TYPE	开环启动曲线类 型	CURVE_TYPE_S TRAIGHT:直线 型	根据用户需求及 调试情况进行设 置	影响无感 FOC 开环运行

参数宏定义	参数名称	参数取值	参数配置	影响范围
		CURVE_TYPE_C USTOMER : 自 定义型		
TIME_DURATION1	开环启动曲线第 1段时长	单位: ms	根据用户需求及 调试情况进行设 置	影响无感 FOC 开环起动 运行时长
TIME_DURATION2	开环启动曲线第 2段时长			
TIME_DURATION3	开环启动曲线第 3段时长			
TIME_DURATION4	开环启动曲线第 4段时长			
TIME_DURATION5	开环启动曲线第 5段时长			
CUSTOMER_CURVE_P OINTS	自定义开环启动 曲线点数	1~5	根据用户需求及 调试情况进行设 置	影响无感 FOC 开环启动 曲 线 , 需 要 选 择 CURVE_TYPE_CUST OMER
FREQ_REF_INITVALUE	开环启动曲线频 率初始值	0~Math_IQ(1.0)	根据用户需求及 调试情况进行设 置	影响无感 FOC 开环运行 曲线的起点设置
CUR_REF_INITVALUE	开环启动曲线电 流初始值	0~Math_IQ(1.0)		
VOLT_REF_INITVALUE	开环启动曲线电 压初始值	0~Math_IQ(1.0)		
FREQ_REF_VALUE_1	开环启动曲线第 1点频率值	0~Math_IQ(1.0)	根据用户需求及 调试情况进行设 置	影响无感 FOC 开环起动 曲线的频率设置
FREQ_REF_VALUE_2	开环启动曲线第 2点频率值			
FREQ_REF_VALUE_3	开环启动曲线第 3点频率值			

参数宏定义	参数名称	参数取值	参数配置	影响范围
FREQ_REF_VALUE_4	开环启动曲线第 4点频率值			
FREQ_REF_VALUE_5	开环启动曲线第 5点频率值			
CUR_REF_VALUE_1	开环启动曲线第 1点电流值	0~Math_IQ(1.0)	根据用户需求及 调试情况进行设	影响无感 FOC 开环起动 曲线的电流设置
CUR_REF_VALUE_2	开环启动曲线第 2点电流值		且.	
CUR_REF_VALUE_3	开环启动曲线第 3点电流值			
CUR_REF_VALUE_4	开环启动曲线第 4点电流值			
CUR_REF_VALUE_5	开环启动曲线第 5点电流值			
VOLT_REF_VALUE_1	开环启动曲线第 1点电压值	0~Math_IQ(1.0)	根据用户需求及 调试情况进行设	影响无感 FOC 开环起动 曲线的电压设置
VOLT_REF_VALUE_2	开环启动曲线第 2点电压值		_ <u></u> 且 	
VOLT_REF_VALUE_3	开环启动曲线第 3点电压值			
VOLT_REF_VALUE_4	开环启动曲线第 4点电压值			
VOLT_REF_VALUE_5	开环启动曲线第 5点电压值			
SCURVE_SPEED_RAMP	速度斜坡 S 曲线 功能开关	无	打开或屏蔽	影响速度指令斜坡的计 算方式
ACC_START_SEG_RATI O	速度斜坡 S 曲线 加速起始段比例	0~Math_IQ(1.0)		影响速度斜坡 S 曲线形 状及加速度计算

参数宏定义	参数名称	参数取值	参数配置	影响范围
ACC_END_SEG_RATIO	速度斜坡 S 曲线 加速结束段比例	0~Math_IQ(1.0)	根据用户需求及 调试情况进行设	
DEC_START_SEG_RATI O	速度斜坡 S 曲线 减速起始段比例	0~Math_IQ(1.0)		
DEC_END_SEG_RATIO	速度斜坡 S 曲线 减速结束段比例	0~Math_IQ(1.0)		
STOP_MODE	停机模式选择	FREE_RUN_ST OP: 自由停机	根据用户需求进 行设置	影响电机控制停机方式
		SLOW_DOWN_S TOP: 减速停机		
MOTOR_DIR	电机启动转向	FORWARD_ROT ATE: 电机启动正 转 REVERSE_ROT ATE: 电机启动反 转	根据用户电机控 制启动需求来设 置电机启动默认 转向	影响电机启动过程电机 转向
SPEED_FIFO_DEPTH	平均转速计算缓 存	0~32767	数值越大,求平 均次数越多	影响转速平均值精度及 执行时间长短
TAIL_HEAD_WIND	风扇顺逆风控制	无	打开或屏蔽	影响风扇无感 FOC 控制 的顺逆风启动
MOTOR_MOTION_BEM F_AMP_THRESHOLD	电机初始转速判 断反电动势阈值	0~4096	根据电机参数及 调试结果设置	影响风扇无感 FOC 控制顺逆风启动的初始状态 判断
HIGH_REVERSE_THRE SHOLD	高速逆风判断阈 值	0~Math_IQ(-1.0)	根据调试结果设 置	
STATIC_THRESHOLD	静止判断阈值	0~Math_IQ(1.0)		
HIGH_FORWARD_THR ESHOLD	高速顺风判断阈 值	STATIC_THRES HOLD ~ Math_IQ(1.0)		
SHORT_BRAKE_CTRL	短路刹车使能位	0:不使能短路刹 车功能	根据应用工况选 择合适的刹车方 式	是否开启刹车功能

参数宏定义	参数名称	参数取值	参数配置	影响范围
		 1: 使能启动前刹 车功能 		
		 2: 使能停机刹车 功能 		
		3: 使能启动前、 停机后刹车功能		
SHORT_BRAKE_CUR_R ATIO	刹车电流大小百 分比	0~100	该值越大刹车电 流越大,刹车越 快速	该值过大会引起较大噪 音
SHORT_BRAKE_UDC_ MAX	刹车时最大母线 电压保护电压	0~1000V	该值取在实际供 电电压以上,过 压点以下	母线电压保护
SHORT_BRAKE_TIMES	刹车完成等待时 间	0~65535ms	为刹车完成后, 电机仍在缓慢转 动,会延迟等待 一段时间,再进 入下一状态	影响刹车完成等待时间
SHORT_QUIT_CUR	刹车退出电流阈 值	0~100	作为判断是否刹 车完成电流阈值	影响退出短路刹车条件
SHORT_TIME	单电阻采样刹车 时间	0~65535ms	单电阻模式刹车 时间设定	影响单电阻模式下刹车 时间设定
ORDER_ERROR_COMP_ MODE	霍尔自学习角度 补偿方式	 (1) 零阶强制补偿 (1) 零阶分散补偿 	高精度 FOC 控制 要求场合建议配 置为零阶分散补 偿模式。零阶强 制补偿在霍尔扇 区切换时,电角 度会因为强制补 偿而跳变	影响霍尔角度估算算法 中角度校准方式
HALL_INSTALL_TYPE	霍尔传感器安装 方式	 0: 120 度霍尔传 感器安装方式 1: 60 度霍尔传感 器安装方式 	根据用户电机霍 尔传感器安装方 式进行设置	影响霍尔角度估算以及 电机旋转方向判断

参数宏定义	参数名称	参数取值	参数配置	影响范围
HALL_SENSOR_SELF_ LEARN	霍尔自学习使能 标志位	ENABLE: 使能 霍尔自学习 DISABLE: 禁止 霍尔自学习	根据控制中是否 需要采用霍尔自 学习的电机电角 度,来选择是否 启用霍尔自学习	影响控制启动过程中是 否执行霍尔自学习功能
HALL_SELF_LEARN_M ODE	霍尔自学习模式	 1: 仅学习霍尔相 序与角度; 2: 学习霍尔相 序、角度及最大最 小扇区宽度 	根据电机能否自 由旋转决定自学 习模式,当电机 已与负载连接而 不能自由旋转 时,需设为1	影响霍尔自学习功能执 行步骤
HALL_SWAP_TRQ_COF F	霍尔低频转矩提 升	0~100%	提升在低速时霍 尔模式输出力矩	影响低速时力矩提升大 小
HALL_SELF_LEARN_IN TERVAL	霍尔自学习时间 间隔	0~Math_IQ(1.0)	霍尔自学习每次 摆动间隔时间设 定,根据电机惯 量确定	影响霍尔自学习摆动间 隔时间
HALL_SELF_LEARN_C UR	霍尔自学习电流	0~Math_IQ(1.0)	霍尔自学习过程 中电流大小设 定,根据电机负 载确定	影响霍尔自学习出力大 小
HALL_SELF_LEARN_O RDER	霍尔安装相序	 Hall 顺序为 2-6-4-5-1; Hall 顺序为 1-5-4-6-2-3; Hall 顺序为 2-6-4-5-1-3; 	根据霍尔自学习 结果得到霍尔安 装相序	影响霍尔角度估算
参数宏定义	参数名称	参数取值	参数配置	影响范围
---------------------------	-----------------	------------------------------	------------------------------------	-----------------
		45: Hall 顺序为 5-1-3-2-6-4;		
		46: Hall 顺序为 6-2-3-1-5-4;		
		51: Hall 顺序为 1-3-2-6-4-5;		
		54: Hall 顺序为 4-6-2-3-1-5;		
		62: Hall 顺序为 2-3-1-5-4-6;		
		64: Hall 顺序为 4-5-1-3-2-6.		
HALL_SELF_LEARN_T HETA	霍尔自学习安装 角度偏差	0~Math_IQ(1.0)	霍尔角度估算零 度角与真实电零 度角偏差	影响霍尔角度估算准确 性
ELEC_BRAKE_ENABLE	电子刹车使能标 志	无	打开或屏蔽	影响刹车功能
ENTER_BRAKE_DEPTH	进入电子刹车的 最小深度	0~32767	数字越大,深度 越深,高于阈值 认为有刹车指令	
EXIT_BRAKE_DEPTH	退出电子刹车的 最大深度	0~32767	数字越大,深度 越深,低于阈值 认为退出刹车指 令	
ENTER_ELEC_BRAKE_ FREQ	进入电子刹车的 最小频率	0~Math_IQ (1.0)	进入电子刹车的 最低频率点,高 于阈值才会刹车	
EXIT_ELEC_BRAKE_FR EQ	退出电子刹车的 最大频率	0~Math_IQ (1.0)	低于阈值才会退 出刹车	
ISQ_ADD_STEP	Q 轴电流递增步 进	0~32767	阈值越大,增步 长越大	

参数宏定义	参数名称	参数取值	参数配置	影响范围
ISQ_DEC_STEP	Q 轴电流递减步 进	0~32767	阈值越大,减步 长越大	
ELEC_BRAKE_CUR_RA TIO	电子刹车最大电 流比率	0~100%	最大相电流峰值 高于设置阈值封 管	
ELEC_BRAKE_UDC_MA X	电子刹车最高母 线电压	0~最大母线电压	母线电压高于阈 值封管	
ELEC_BRAKE_DEPTH	电子刹车深度	0~32767	外界实际输入的 刹车指令深度	
ELEC_BRAKE_MAX_DE PTH	电子刹车最大深 度	0~32767	外界刹车指令高 于设置阈值时认 为等于阈值	
POWER_DCCUR_EST_E NABLE	功率与母线电流 估算使能标志	无	打开或屏蔽	影响功率及母线电流估 算功能的执行
PWM_DELAY_COF	功率估算 PWM 延时系数	0~32767	系数越大,认为 补偿角度越大	影响控制器输出功率计 算精度
UQCOMP	功率估算 Q 轴电 压补偿	0~32767	系数越大,Q轴 电压补偿越大	
PARAM_IDENTIFY_SEL	参数辨识模式选 择	Bit0: 电阻辨识 Bit1: Ld/Lq 辨识 Bit2: 磁链辨识 Bit3: 惯量辨识	根据所需辨识的 参数任意组合。 例如需要辨识电 阻与磁链,则配 置为0x05	参数辨识模式选择
RS_ID_PHASE_SEL	定子电阻辨识相 数选择	 1: 仅辨识一相 2: 辨识两相 3: 辨识三相 		影响定子电阻辨识时长 与辨识结果
RS_ID_FIRST_INJECT	定子电阻辨识第 一次注入电流阈 值	0~Math_IQ(1.0)	两次注入电流幅 值应设置 不同 值,避免过大或	影响定子电阻辨识过程 中的电流

参数宏定义	参数名称	参数取值	参数配置	影响范围
RS_ID_SECOND_INJEC T	定子电阻辨识第 二次注入电流阈 值	0~Math_IQ(1.0)	过小,以免影响 辨识结果	
RS_STABLE_DELAY	定子电阻辨识等 待稳定延时	单位: ms	不可过大或过 易 小,避免电机过	影响定子电阻辨识时长
RS_SETTING_DELAY	定子电阻辨识等 待延时	单位: ms	果	
RS_SAMPLE_DELAY	定子电阻辨识采 样延时	单位: ms		
PMSM_LDQ_METHOD_ SEL	PMSM 电感辨识 方法选择	PMSM_LDQ_ME THOD_HFP: 采 用高频脉冲辨识法 PMSM_LDQ_ME THOD_HFS: 采 用高频正弦法	高频脉冲辨识法 不支持单电阻采 样模式	影响 PMSM 电感辨识策 略
PMSM_LDQ_INIT_PRD	高频脉冲法 DQ 电感辨识初始 PWM周期设置	单位: 1	通常不需修改, 采用默认值即可	影响 DQ 电感辨识
PMSM_LDQ_CUR_LIMI T	DQ 电感辨识最 大电流限幅	0~Math_IQ(1.0)	设置过大可能导 致过流故障等	
PMSMID_ALIGN_TIME 1	PMSM 参数辨识 第一次强吸时间	单位: ms	可与IF强吸参数 配置相同	影响强吸过程
PMSMID_ALIGN_TIME 2	PMSM 参数辨识 第二次强吸时间	单位: ms		
PMSMID_ALIGN_CUR	PMSM 参数辨识 强吸电流	0~Math_IQ(1.0)		
PMSMID_ALIGN_WAIT	PMSM 参数辨识 强吸完成等待延 时时间	单位: ms	可根据调试情况 设置数值	

参数宏定义	参数名称	参数取值	参数配置	影响范围
PMSMID_CUR_DC_SET	PMSM 电感辨识 高频正弦法直流 电流设定值	0~Math_IQ(1.0)	设置过大可能导 致过流故障	影响 PMSM 电感辨识高频正弦法的电流和辨识 结果
PMSMID_CUR_AC_SET D	PMSM 电感辨识 高频正弦法 D 轴 电流设定值	0~Math_IQ(1.0)	设置过大可能导 致过流故障	
PMSMID_CUR_AC_SET Q	PMSM 电感辨识 高频正弦法 Q 轴 电流设定值	0~Math_IQ(1.0)	设置过大可能导 致过流故障	
PMSMID_CUR_FREQ_S ETD	PMSM 电感辨识 高频正弦法 D 轴 电流频率设定值	0~Math_IQ(8.0)	设置过大可能导 致电流波形异常	
PMSMID_CUR_FREQ_S ETQ	PMSM 电感辨识 高频正弦法 Q 轴 电流频率设定值	0~Math_IQ(8.0)	设置过大可能导 致电流波形异常	
PMSM_CUR_DC_STEP	PMSM 电感辨识 高频正弦法直流 电流步距	0~Math_IQ(1.0)	设置过大可能导 致电流冲击	
STABLE_JUDGE_LIMIT	参数辨识反馈电 流稳定判断点	0~Math_IQ(1.0)	设置过小可能导 致辨识结果异常	影响反馈电流稳定性判 断
PMSMID_LDQ_PWMFR EQ	PMSM 电感辨识 高 频 正 弦 法 PWM 频率	单位: Hz	设置过大可能导 致程序执行异常	影响中断执行时间
PMSMID_LDQ_PWMPR D	PMSM 电感辨识 高 频 正 弦 法 PWM 周期	根据 PMSMID_LDQ_ PWMFREQ的值 自动计算	无需修改	
PMSMID_FLUX_ FRE	磁链辨识目标频 率设定值	0~Math_IQ(1.0)	不可设置过大, 避免运行失步	影响磁链辨识
PMSMID_FLUX_CUR	磁链辨识电流设 定值	0~Math_IQ(0.5)	不可设置过大, 避免过流故障等	

参数宏定义	参数名称	参数取值	参数配置	影响范围
PMSMID_FLUX_IF_ACC	磁链辨识电流累 加步距	单位: 1	可根据调试情况 设置数值	
ACIMID_RR_CURRENT	异步电机转子电 阻辨识电流幅值	0~Math_IQ(1.0)	一般无需修改	影响异步电机参数辨识 结果
ACIMID_RR_FREQ	异步电机转子电 阻辨识电流频率	Math_IQ(0.5)~M ath_IQ(1.0)	一般无需修改	
ACIMID_LM_FREQ	异步电机互感辨 识电流频率	Math_IQ(0.5)~M ath_IQ(1.0)	一般无需修改	
ACIMID_RR_CURSTEP	异步电机转子电 阻辨识电流步距	0~Math_IQ(1.0)	可根据调试情况 设置数值	
ACIMID_LM_FREQSTE P	异步电机互感辨 识电流频率步距	0~Math_IQ(1.0)	可根据调试情况 设置数值	
ACIMID_CURRENT_TH RESHOLD	异步电机参数辨 识电流稳定判断 点	0~Math_IQ(1.0)	可根据调试情况 设置数值	
ACIMID_VOLTAGE_TH RESHOLD	异步电机参数辨 识电压稳定判断 点	0~Math_IQ(1.0)	可根据调试情况 设置数值	
PARID_DATANUM	参数辨识采样点 数	单位: 1	可根据调试情况 设置数值	影响辨识时间
PARID_FILTER1COEFF 1	参数辨识信号滤 波器 1 的第一滤 波系数	单位: 1	可根据调试情况 设置数值	影响电压、电流信号的 分析,设置不当可能导 致信号信息提取失败, 王法宫或参数辨识过程
PARID_FILTER1COEFF 2	参数辨识信号滤 波器 1 的第二滤 波系数	单位: 1	可根据调试情况 设置数值	儿伍兀风参数加加过在
PARID_FILTER2COEFF 1	参数辨识信号滤 波器 2 的第一滤 波系数	单位: 1	可根据调试情况 设置数值	

参数宏定义	参数名称	参数取值	参数配置	影响范围
PARID_FILTER2COEFF 2	参数辨识信号滤 波器 2 的第二滤 波系数	单位: 1	可根据调试情况 设置数值	
DEAD_BAND_COMP	死区补偿使能标 志	无	打开或屏蔽	影响死区补偿功能的执 行
CUTOFF_CUR_VAL	死区补偿电流阈 值	0~Math_IQ(1.0)	作为进入死区补 偿功能电流矢量 幅值阈值	影响进入死区补偿功能 条件
MAX_COMP_FREQ	死区补偿频率阈 值	0~Math_IQ(1.0)	作为进入死区补 偿功能电机频率 阈值	影响进入死区补偿功能 条件
OVER_VOL_SUPPRESS	过压抑制使能标 志	无	打开或屏蔽	影响过压抑制功能的执 行
NARROW_PULSE_PRO CESS	窄脉宽处理使能 标志	无	打开或屏蔽	影响窄脉宽功能的执行
SAVE_ENERGY	节能控制使能标 志	无	打开或屏蔽	影响节能控制功能的执 行
MAX_CUR_CHANGE	最大电流切换阈 值	0~Math_IQ(1.0)	根据最大输出电 流确定	影响节能控制执行过程 中最大电流阈值
STEADY_CUR_CHANG E	稳定电流检测阈 值	0~Math_IQ(1.0)	负载稳定判断阈 值电流	影响判断负载稳定,进 入节能控制条件
CUR_CHANGE_STEP	D 轴电流步进	0~Math_IQ(1.0)	一般按照默认参 数	影响节能控制中 d 轴电 流调节步长
ENERGY_SAVE_DEC	电流幅值递减步 长	0~Math_IQ(1.0)	一般使用默认参 数	影响 d 轴电流反向调节 步长大小
ENERGY_SAVE_INC	电流幅值递增步 长	0~Math_IQ(1.0)	一般使用默认参 数	影响 d 轴电流正向调节 步长大小
RECHECK_CUR_CHAN GE	节能控制重新进 入电流阈值	0~Math_IQ(1.0)	根据电机额定电 流修改	影响重新进入节能控制 算法电流变化阈值

参数宏定义	参数名称	参数取值	参数配置	影响范围
MAX_ID_TARGET	D 轴电流上限	0~Math_IQ(1.0)	一般使用默认参 数	影响 d 轴电流设定最大 值
MIN_ID_TARGET	D轴电流下限	0~Math_IQ(1.0)	一般使用默认参 数	影响 d 轴电流设定最小 值
WAIT_TIME	节能控制时间间 隔	0~65535ms	一般使用默认参 数	影响调节 d 轴电流间隔 时长
ENTER_ENERGY_SAVE _LOAD	节能控制负载阈 值	0~Math_IQ(1.0)	根据电机所带负 载大小修改	影响进入节能控制算法 电流大小阈值
SMC_KSLIDE0	滑模观测器增益	0~Math_IQ(1.0)	无感 FOC 开环调 试估计电机转子 电角度时,噪声 低但逼近积分电 角度速度慢,则 需增加滑模增 益,加快滑模估 计收敛速度	影响滑模观测器对反电 动势和电角度的估计速 度及估计结果的稳定性 和噪声
SMC_KSLF0	滑模观测滤波系 数	0~Math_IQ(1.0)	无感FOC开环调 试时,反电动势 高频减小,反电动势 需减小,滤波系数 越小,滤波系数 述,滤波数 重。到达转速无 法时,需增 加滤波系数,保 证低频率高于最大 频率	
SMC_MAXERRO	滑模观测估计误 差最大值	0~Math_IQ(1.0)	无感 FOC 开环调 试时, 电机转速 高,则需增加滑 模观测估计误差 边界,抑制滑模 抖颤	

参数宏定义	参数名称	参数取值	参数配置	影响范围
SMC_KSLIDE1	滑模观测器增益	0~Math_IQ(1.0)	无感 FOC 闭环调 试估计电机转子 电角度时,噪声 低但逼近积分电 角度速度慢,则 需增加滑模增 益,加快滑模估 计收敛速度	
SMC_KSLF1	滑模观测滤波系 数	0~Math_IQ(1.0)	无感FOC闭环调 试局需系数述量、 一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一	
SMC_MAXERR1	滑模观测估计误 差最大值	0~Math_IQ(1.0)	无感 FOC 闭环调 试时, 电机转速 高,则需增加滑 模观测估计误差 边界,抑制滑模 抖颤	
FULL_ORDER_SMC	全阶滑模观测器 使能开关	无	打开或屏蔽	影响全阶滑模观测器的 使用
FULL_SMC_GAIN	全阶滑模增益	0~32767	系数越大,则响 应越快,但转速 波动相应亦较大	
FULL_SMC_FILT	全阶滑模滤波使 能开关	ENABLE : 使 能; DISABLE: 禁止	全阶滑模观测器 反电动势参数滤 波开关	

参数宏定义	参数名称	参数取值	参数配置	影响范围
FLIT_COEFF	磁链观测器低通 滤波器系数	0~32767	系数越小,滤波 越严重	影响低通滤波截止频率
COMPCOF_UPLIMIT	磁链观测器反电 势补偿上限	0~Math_IQ(100)	系数越大,补偿 越接近真实值, 为了限制 0 速附 近补偿过大问题	影响磁链观测器角度精 度
ALPHA_COEFF	自适应观测器速 度估算系数	Math_IQ(0)~Mat h_IQ(1.0)	值越大,频率估 算收敛越快,相 应抖动增大	影响自适应观测器转速 估算
BETA_COEFF	自适应观测器速 度估算补偿系数	Math_IQ(0)~Mat h_IQ(1.4)	值越大,频率估 算收敛越快,相 应抖动增大	
COEFFPLL_SMC	滑模观测器锁相 环计算电角度系 数	0~16384	系数越大,锁相 环 PI 系数越大	影响滑模观测器的角度 估算
COEFFPLL_FLUX	磁链观测器锁相 环计算电角度系 数	0~16384	系数越大,锁相 环 PI 系数越大	影响磁链观测器的角度 估算
T_ALIGNMENT1	一次预定位时长	单位: ms	系数越大,第一 段定位时间越长	影响预定位时间长短
T_ALIGNMENT2	二次预定位时长	单位: ms	系数越大,第二 段定位时间越长	影响预定位时间长短
ALIGNMENT_ANGLE_ DEGREE	预定位角度	单位:度	默认定位0度	影响初始预定位角度
ALIGNMENT_ANGLE	预定位电角度	自动计算	根据 ALIGNMENT_ ANGLE_DEGR EE的值自动计 算	影响初始预定位角度
I_ALIGNMENT1	一次预定位电流	0~Math_IQ(1.0)	系数越大,预定 位电流越大	影响预定位电流给定值

参数宏定义	参数名称	参数取值	参数配置	影响范围
I_ALIGNMENT2	二次预定位电流	0~Math_IQ(1.0)	系数越大,预定 位电流越大	影响预定位电流给定值
I_RAMP1_INIT	预定位电流第一 段斜坡初始值	0~Math_IQ(1.0)	值越大,预定位 第一段斜坡起点 越大,电流阶跃 越大	影响预定位强吸电流斜 坡形状
I_RAMP2_INIT	预定位电流第二 段斜坡初始值	0~Math_IQ(1.0)	值越大,预定位 第二段斜坡起点 越大,电流阶跃 越大	
T_SLOPE1	预定位电流第一 次斜坡时长	单位: ms	值越大,预定位 第一段斜坡时间 越长,电流增加 得越缓慢	
T_SLOPE2	预定位电流第二 次斜坡时长	单位: ms	值越大,预定位 第二段斜坡时间 越长,电流增加 得越缓慢	
PULSE_SELF_LEARN	脉冲注入法自学 习使能标志位	无	打开或屏蔽	根据控制中是否需要无 抖动启动,来选择是否 启用脉冲注入法,影响 电机启动平顺性
PWM_SELF_LEARN_PR D	脉冲注入法自学 习后所得到的脉 冲宽度	0~65536	作为取消脉冲自 学习后的脉冲宽 度	影响注入脉冲宽度
INTI_PULSE_PERIOD	脉冲注入法初始 PWM 周期	0~65536	作为初始脉冲注 入脉宽,受电机 电感大小影响	影响初始注入脉冲宽度
SELF_LEARN_THRES	脉冲注入法自学 习阀值电流	0~Math_IQ(1.0)	一般使用默认参 数即可	脉冲注入初始角度辨识 成功率
SELF_LEARN_DUTY_S TEP	脉冲注入法自学 习 PWM 脉宽变 化率	0~65536	脉冲宽度自学习 每拍脉宽增量	影响脉冲注入脉宽自学 习每拍脉宽增量

参数宏定义	参数名称	参数取值	参数配置	影响范围
INITPOS_VOLT_AMP	初始位置检测注 入旋转电压幅值	0~Math_IQ(1.0)	注入电机旋转正 弦电压幅值	影响电机相电流采样及 检测电角度
INITPOS_VOLT_FREQ	初始位置检测注 入旋转电压频率	0~Math_IQ(3.0)	注入电机旋转正 弦电压频率	
INITPOS_PULSE_AMP	初始位置检测注 入脉冲电压幅值	0~Math_IQ(1.0)	注入脉冲电压幅 值	影响初始位置检测中磁 极的检测结果
INITPOS_PULSE_INJE CT_TIME	初始位置检测注 入脉冲电压时间	1~5	注入脉冲电压时 间	
INITPOS_PULSE_CLEA R_TIME	初始位置检测注 入脉冲电压清除 时间	1~200	注入脉冲电压间 隔等待时间	
HFI_DEBUG_MODE	高频注入调试模 式开关	0 or 1	打开或屏蔽	影响高频注入功能
HFI_TO_STO	高频注入是否切 换至状态观测器 开关	0 or 1	打开或屏蔽	
HFI_FREQUENCY	高频注入电频率	0~PWM 频率	系数越大,注入 频率越高	
HFI_AMPLITUDE	高频注入电压幅 值	0~Math_IQ(1.0)	系数越大,注入 电压幅值越高	
HFI_PULSE_AMP	高频注入电压脉 冲幅值	0~Math_IQ(1.0)	系数越大,注入 电压幅值越高	
HFI_PULSE_TIME	高频注入电压注 入时间	0~100	脉冲注入时间, 以 PWM 周期为 单位	
HFI_CLEAR_TIME	高频注入电流清 零时间	单位: ms	根据高频注入调 试情况设置	
HFI_JUDGE_TIME1	高频注入第一次 判断时间	单位: ms		

参数宏定义	参数名称	参数取值	参数配置	影响范围
HFI_JUDGE_TIME2	高频注入第二次 判断时间	单位: ms		
HFI_INIT_TIME	高频注入初始注 入时间	单位: ms		
HFI_INIT_THETA	高频注入初始注 入角度	单位:度		
HFI_PLL_KP_DEFAULT	高频注入锁相环 调节器参数	0~32767	锁相环比例系数	影响高频注入角度精度
HFI_PLL_KI_DEFAULT	高频注入锁相环 调节器参数	0~32767	锁相环积分系数	
HFI_INIT_FREQ	高频注入初始频 率	单位: Hz	影响低速性能	影响高频注入和状态观 测器之间切换
HFI_FREQ_HIGH	高频注入与观测 器的切换点	单位: Hz		
HFI_FREQ_LOW	观测器与高频注 入的切换点	单位: Hz		
HFI_VD_FREQ_HIGH	高频注入电压降 幅高频点	单位: Hz	影响低速性能	影响高频注入功能
HFI_VD_FREQ_LOW	高频注入电压降 幅低频点	单位: Hz		
HFI_DIR_ERR_TIME	高频注入运行方 向判断时间	单位: ms	根据实际调试情 况设置	影响方向判断
HFI_DIR_ERR_FREQ	高频注入运行方 向判断频率阈值	单位: Hz		
BPF_A0	带通滤波器参数	-Math_IQ(1.0)~	根据开关频率和	影响通带频率
BPF_A2	带通滤波器参数	1viatii_1Q(1.0)	地市 频率设计的 BPF系数	
BPF_B1	带通滤波器参数			

参数宏定义	参数名称	参数取值	参数配置	影响范围
BPF_B2	带通滤波器参数			
LPF_A0	低通滤波器参数		根据开关频率和载止频率设计的	影响截止频率
LPF_A1	低通滤波器参数		LPF系数	
LPF_A2	低通滤波器参数			
LPF_B1	低通滤波器参数			
LPF_B2	低通滤波器参数			
THETA_LPF_COEFF	高频注入角度滤 波系数	0~Math_IQ(1.0)	根据调试情况进 行设置	影响高频注入运行
CUR_LPF_COEFF	高频注入电流滤 波系数	0~Math_IQ(1.0)		
CURRENT_PID_SELF_L EARN	电流环 PID 参数 自学习使能标志	ENABLE: 使能 电流环 PI 参数自 学习 DISABLE: 禁止 电流环 PI 参数自	根据电流环调试 情况进行选择	影响电流环 PID 自学习 功能
		学习		
SPEED_PID_SELF_LEA RN	速度环 PID 参数 自学习使能标志	ENABLE: 使能 速度环 PI 参数自 学习 DISABLE: 禁止 速度环 PI 参数自 学习	根据速度环调试 情况进行选择	影响速度环 PID 自学习 功能
CURRENT_REGULATO R_BANDWIDTH	电流环带宽	单位: rad/s	默认值,咨询客 户支持	影响电流环 PI 参数自学 习
SPEED_REGULATOR_B ANDWIDTH	速度环带宽	单位: rad/s	默认值,咨询客 户支持	影响速度环 PI 参数自学 习
SPEED_DAMP_CONST	电机阻尼常数	1~16	默认值,咨询客 户支持	影响速度环 PI 参数自学 习

参数宏定义	参数名称	参数取值	参数配置	影响范围
POSITION_LOOP_CTRL	位置环控制	无	打开或屏蔽	仅支持有编码器的位置 环控制
REDUCTION_RATIO_C ONST	位置环减速率	1~60	根据用户需求设 置	根据用户需求设 影响位置环运行 置
POSITION_ACTION_MA X_TIME	位置环最大时间	单位: ms		
POSITION_GEAR_DEFA ULT	位置环运行档位	0~2		
POSITION_ANGLE_BAS E	位置环角度基准	单位:1		
POSITION_TARGET_DE FAULT	位置环目标角度	单位: 1		
PID_POSITION_KP_DE FAULT	位置环 PID 参数	0~Math_IQ(1.0)	需根据位置环调 试效果整定修改	影响位置环响应与稳定 性
PID_POSITION_KI_DEF AULT				
PID_POSITION_KD_DE FAULT				
PID_POSITION_MAX_D EFAULT				
PID_POSITION_MIN_D EFAULT				
PID_TORQUE_KP_DEF AULT	力矩轴 Q 轴 PID 参数	0~Math_IQ(4.0)	需根据 Q 轴电流 环调试效果整定	影响FOC控制中Q轴电 流环响应速度和稳定性
PID_TORQUE_KI_DEFA ULT			修改	
PID_TORQUE_KD_DEF AULT				
PID_TORQUE_MAX_DE FAULT				

参数宏定义	参数名称	参数取值	参数配置	影响范围
PID_TORQUE_MIN_DE FAULT				
PID_FLUX_KP_DEFAU LT	励磁轴 D 轴 PID 参数	0~Math_IQ(4.0)	需根据 D 轴电流 环调试效果整定	影响FOC控制中D轴电 流环响应速度和稳定性
PID_FLUX_KI_DEFAUL T			修改	
PID_FLUX_KD_DEFAU LT				
PID_FLUX_MAX_DEFA ULT				
PID_FLUX_MIN_DEFA ULT	 			
PID_SPEED_KP_DEFA ULT	速度环 PID 参数	0~Math_IQ(1.0)	需根据调试中速 度环调试效果整	影响 FOC 控制中速度环 响应速度和稳定性
PID_SPEED_KI_DEFAU LT			定修改	
PID_SPEED_KD_DEFA ULT				
PID_SPEED_MAX_DEF AULT				
PID_SPEED_MIN_DEFA ULT	 			
FEED_FORWARD_DEC OUPLE	电流环前馈解耦 使能标志	无	打开或屏蔽	影响电流环前馈解耦功 能的执行
FEED_FORWARD_LIMI T	电流环前馈解耦 限幅	0~Math_IQ(1.0)	一般无需修改	影响解耦输出
COMPLEX_VECTOR_D ECOUPLE	电流环复矢量解 耦使能标志	无	打开或屏蔽	影响复矢量解耦功能执 行
LOAD_TORQUE_ESTIM ATE	负载转矩估算使 能标志	无	打开或屏蔽	影响负载转矩估算功能 的执行

参数宏定义	参数名称	参数取值	参数配置	影响范围
LOAD_ESTIMATE_COE FF	负载转矩估算增 益系数	单位: 1	根据调试情况进 行设置	影响负载转矩估算功能 的执行
LOAD_COMP_LIMIT	负载转矩估算补 偿限幅值	0~Math_IQ(1.0)		
INERTIA_ONLINE_IDE NT	惯量在线辨识使 能标志	无	打开或屏蔽	影响惯量在线辨识功能 的执行
INERTIA_IDENT_MRAS	基于模型参考自 适应 MRAS 的惯 量在线辨识	无	打开或屏蔽	
INERTIA_IDENT_FFLS	基于最小二乘法 FFLS 的惯量在 线辨识	无	打开或屏蔽	
INERTIA_IDENT_GAIN _MRAS	MRAS 惯量辨识 增益	单位:1	根据调试情况设 置	影响惯量在线辨识功能 执行
INERTIA_IDENT_FACT OR_FFLS	FFLS 惯量辨识 遗忘因子			
INERTIA_IDENT_PK_I NIT_FFLS	FFLS 惯量辨识 PK参数初始值			
INERTIA_IDENT_COF_I NIT	惯量辨识初始系 数			
INERTIA_IDENT_OPER ATION_PERIOD	惯量辨识执行周 期			
INERTIA_IDENT_ERRO R_THRESHOLD	惯量辨识误差阈 值			
INERTIA_IDENT_STEA DY_TIME	惯量辨识稳定时 间	单位: s		
INERTIA_IDENT_OLD_ TIME	惯量辨识上一周 期值更新时间	单位: s		

参数宏定义	参数名称	参数取值	参数配置	影响范围
ASR_VARPI_ENABLE	速度环变 PI 参数 使能标志	无	打开或屏蔽	影响速度环变 PI 参数功 能的执行
QUICK_DESATURATIO N	快速退饱和使能 标志	无	打开或屏蔽	影响速度环快速退饱和 功能的执行
FEEDBACK_GAIN	PID 调节器反馈 增益	0~Math_IQ(1.0)	反馈抑制 PID 反 馈增益系数	影响反馈抑制 PID 积分 限制快慢
FLUX_WEAKENING	弱磁控制使能标 志	无	打开或屏蔽	影响弱磁控制功能的执 行
FLUXWEAKE_VOLTAG E_REF	弱磁控制电压参 考值	0~1000	电压环弱磁输入	影响电压环弱磁给定大 小
FLUX_WEAKE_KP	弱磁 PI 调节器比 例系数	0~Math_IQ(1.0)	系数越大,电压 环比例系数越大	影响电压环弱磁 PI 调节 器性能
FLUX_WEAKE_KI	弱磁 PI 调节器积 分系数	0~Math_IQ(1.0)	系数越大,电压 环积分系数越大	
IDMIN	弱磁电流下限	Math_IQ(-1.0)~0	预留	影响电压环弱磁功能
IDDEMAG	退磁电流	Math_IQ(-1.0)~0	Id 低于此阈值会 限制在阈值,设 置过低存在使永 磁体退磁的风险	
ISMAX	电机最大电流标 幺值	0~Math_IQ(1.0)	一般等同设置为 实际最大相电流	
MAXMODULE	弱磁控制最大调 制度	0~Math_IQ(1.0)	电压弱磁输入调 制度	
MTPA_ENABLE	最大转矩电流比 MTPA使能标志	无	打开或屏蔽	影响最大转矩电流比控 制功能

3.3.2 BLDC 参数适配

Demo板中六步方波控制方案配置参数在bldc_parameters_define.h文件中定义,用户可根据实际控制 需求进行适配修改。表 3-5 列出了 bldc_parameters_define.h 中定义的算法参数。

表 3-5 方波算法参数宏定义适配表

参数宏定义	参数名称	参数取值	参数配置	影响范围
DATA_ACCESS_FLASH _ENABLE	参数固化 Flash 功能使能开关	无	打开或屏蔽	影响 flash 固化、恢复参数功能的使用
SIX_STEP_SQUARE_W AVE	六步方波控制	无	打开或屏蔽	影响电机控制方式
BLDC_HALL	带 Hall 传感器方 波控制	无	打开或屏蔽	影响电机控制方式
BLDC_SENSORLESS	无传感器方波控 制	无	打开或屏蔽	
BEMF_DETECT_HARD WARE	硬件检测反电动 势使能标志	无	打开或屏蔽,仅 在无传感模式下 生效	影响无传感器方波控制 实现方式
BEMF_DETECT_SOFT WARE	软件检测反电动 势使能标志	无	打开或屏蔽,仅 在无传感模式下 生效	
CURRENT_LOOP_CTRL	电流环控制使能 标志	无	打开或屏蔽	影响 BLDC 控制环路结 构
PWM_FREQ_SETTING	PWM 计数频率	单位:Hz	默认 8000	影响 BLDC 控制执行频 率
PWM_PRSC	PWM 分频系数	单位:1	默认 0	影响 PWM 模块配置
PWM_MODE_SELECT	PWM 计数模式 选择	PWM_COUNT_U P_MODE: 增计 数模式 PWM_COUNT_U P_DOWN_MODE : 增减计数模式	根据用户算法需 求进行设置	
MS_UINT_INT	毫秒时基	单位:毫秒	根据用户配置自 动计算	在电流环中作为毫秒时 基单位
DUTY_BASE_VALUE	占空比调制基值	>100	根据调制波占空 比细分程度设置	影响调制占空比分辨率

参数宏定义	参数名称	参数取值	参数配置	影响范围
BLDC_DUTY_UNIT	占空比基准单位	DUTY_BASE_VA LUE / 100	根据 DUTY_BASE_ VALUE的值自 动计算	PWM 占空比基准值, 1%占空比
BLDC_SPEED_KP_DEF AULT	速度环 PI 调节器 比例系数	0~Math_IQ(1.0)	需根据调试中速 度环调试效果整 空格 3	影响方波控制中速度环 响应速度和稳定性
BLDC_SPEED_KI_DEFA ULT	速度环 PI 调节器 积分系数	0~Math_IQ(1.0)	走 1100	
BLDC_SPEED_KD_DEF AULT	速度环 PI 调节器 微分系数	0~Math_IQ(1.0)		
BLDC_SPEED_MAX_DE FAULT	速度环 PI 调节器 最大输出	0~Math_IQ(1.0)		
BLDC_SPEED_MIN_DE FAULT	速度环 PI 调节器 最小输出	Math_IQ(-1.0) ~0		
OPEN_LOOP_SPEED_H Z	默认目标机械频 率	单位: Hz	启动频率设置	影响电机初始目标转速
DEFAULT_TARGET_FR EQ_START	启动默认目标频 率	根据默认目标机械 频率自动计算	根据 OPEN_LOOP_ SPEED_HZ的 值自动计算	影响电机初始目标转速
SPEED_CHANGE_STEP	速度斜坡变化率	单位: Hz	根据客户需求进 行设置	影响速度指令斜坡变化 率
MAX_SPEED_VALUE	最大运行转速	单位: Hz	根据客户电机参 数进行设置	影响电机运行速度范围
MIN_SPEED_VALUE	最小运行转速	单位: Hz	根据客户需求进 行设置	
ACCELERATION_RPS	单次加速调速斜 率	单位: rpm/s	根据用户调速需 求进行设置。需 要调速响应快则	影响电机调速过程中调 速的快慢
DECELERATION_RPS	单次减速调速斜 率		安 啊 迷 門 应 (人名) 增大参数	

参数宏定义	参数名称	参数取值	参数配置	影响范围
MOTOR_DIR	电机启动转向	FORWARD_ROT ATE: 电机启动正 转 REVERSE_ROT ATE: 电机启动反 转	根据用户电机控 制启动需求来设 置电机启动默认 转向	影响电机启动过程电机 转向
BLDC_CURRENT_KP_D EFAULT	电流环 PI 调节器 比例系数	0~Math_IQ(1.0)	需根据调试中电 流环调试效果整 完修改	影响方波控制中电流环响应速度和稳定性
BLDC_CURRENT_KI_D EFAULT	电流环 PI 调节器 积分系数		龙珍以	
BLDC_CURRENT_KD_D EFAULT	电流环 PI 调节器 微分系数			
BLDC_CURRENT_MAX_ DEFAULT	电流环 PI 调节器 最大输出			
BLDC_CURRENT_MIN_ DEFAULT	电流环 PI 调节器 最小输出			
CURRENT_PU_COF	电流采样标幺转 换系数	单位: 1	根据硬件电路参 数自动计算	影响电流采样转换结果
CURRENT_AD_COF	电流采样 AD 转 换系数	单位: 1		
CURRENT_AD_VALUE(XA)	电流采样转换系 数	单位: 1		
PWDT_CLK_PSC	PWDT 时钟分频 系数	单位: 1	根据霍尔信号质 量和应用需求进 ^{公配要}	影响 Hall 信号滤波
PWDT_FILT_PSC	PWDT 输入信号 滤波器时钟分频	单位: 1	11 PU_E_	
PWDT_FILT_VAL	PWDT 输入信号 滤波系数	单位: 1		
MAX_DUTY_WITH_HAL L	有感方波输出最 大占空比		根据有感方波最 高转速调整	限制有感方波最高转速

参数宏定义	参数名称	参数取值	参数配置	影响范围
MIN_DUTY_WITH_HAL L	有感方波输出最 小占空比	(0 ~ 100) * BLDC_DUTY_U NIT	根据有感方波最 低转速调整	限制有感方波最低转速
MAX_DUTY_SENSORL ESS	无感方波输出最 大占空比		根据无感方波最高转速调整	限制无感方波最高转速
MIN_DUTY_ SENSORLESS	无感方波输出最 小占空比		根据无感方波最 低转速调整	限制无感方波最低转速
STARTUP_DUTY_STEP	启动占空比步距	单位: BLDC_DUTY_U NIT	根据用户电机控 制启动需求来设 置	影响启动
KICK_STARTUP	无传感器方波控 制开环加速启动	无	打开或屏蔽	影响无感方波启动方式 和启动时间
NOKICK_STARTUP	无传感器方波控 制直接启动	无	打开或屏蔽	
DRAG_DUTY	无感启动强拖占 空比	单位: BLDC_DUTY_U NIT	根据用户电机启 动负载惯量设置	影响无感方波直接启动 模式启动加速度
FORCE_COMMUTATE_ TIME	强制换相时间	单位: us	根据用户电机应 用最低转速设置	影响无感方波最低转 速,需大于最低转速换 相时间
FIRST_STEP_DRAG_TI ME	闭环首次强拖时 间	单位: us	根据用户电机无感方波切入闭环	影响无感方波切入闭环 过程
FIRST_COMMUTATE_T IME	闭环首次换相时 间		顺物性与电流安 求设置	
BLDC_AFTER_FLOW_C ONTROL	无感方波续流时 间抑制功能	无	打开或屏蔽	影响无感方波高速重载 时续流时间
RISE_AFTER_FLOW	抑制续流上升沿 反电动势	无	打开或屏蔽	影响无感方波高速重载 时反电动势上升沿续流 时间

参数宏定义	参数名称	参数取值	参数配置	影响范围
FALL_AFTER_FLOW	抑制续流下降沿 反电动势	无	打开或屏蔽	影响无感方波高速重载 时反电动势下降沿续流 时间
AFTER_FLOW_ANGLE_ PSRC	续流时间分频系 数	单位: 1	根据调试情况进 行设置	影响无感方波高速重载 时续流时间
AFTER_FLOW_ANGLE_ NUMERATOR	续流角度系数	0 ~ 2* AFTER_FLOW_ ANGLE_PSRC	根据调试情况进 行设置	影响无感方波高速重载 时续流时间
MIN_DUTY_PREPOSITI ON	无感方波预定位 最小占空比	0~ (5% * DUTY_BASE_VA LUE)	根据控制无感电 机负载大小来调 整预定位占空比	影响无感方波预定位准 确性
MAX_DUTY_PREPOSIT ION	无感方波预定位 最大占空比	-	大小和预定位时间	
STEP_DUTY_PREPOSIT ION	无感方波预定位 占空比步进			
INIT_PREPOSITION_D ELAY	无感方波预定位 初始延时	0~100,单位: ms		影响无感方波预定位耗 时
INIT_PREPOSITION_D ELAY_STEP	无感方波预定位 延时步进			
MIN_PREPOSITION_DE LAY	无感方波预定位 最小延时			
BLDC_SENSORLESS_I NIT_DELAY_TIME	无感方波开环加 速初始延时	0~50,单位: ms	根据无感方波开 环加速平滑度调	影响无感方波开环 kick 加速过程
BLDC_SENSORLESS_M IN_DELAY_TIME	无感方波开环加速最小延时		延时	
BLDC_SENSORLESS_S TEP_DELAY_TIME	无感方波开环加 速延时步进			
MAX_DUTY_SENSORL ESS_START	无感方波开环加 速最大占空比	0~ (20% * DUTY_BASE_VA LUE)	根据无感方波开 环加速平滑度调 整	影响无感方波开环启动 过程

参数宏定义	参数名称	参数取值	参数配置	影响范围
UNDRIVE_PHASE_BEM F	过零检测反电动 势结果	无	根据 MCU 外设 配置设定	影响反电动势结果读取
DETECT_OK	检测正常状态	0	无需配置	定义检测状态
DETECT_FAULT	检测故障状态	1		
DETECT_UNKNOWN	检测未知状态	2		
BLDC_OVER_CURREN T_CHECK	母线过流保护使 能标志	无	打开或屏蔽	影响 BLDC 母线电流过 流保护策略
BLDC_OVER_CURREN T_THRESHOLD	过流阈值	单位: A	根据电机和硬件 电路设置	
LIMIT_PEAK_CUR_AD	电流峰值 AD 转 换结果	单位:1	根据过流阈值自 动计算	
BLDC_OVER_CURREN T_DBC	过流保护执行周 期	单位: ms	根据实际需求设 置	
LOSE_PHASE_PROTEC TION_ENABLE	缺相保护使能标 志	无	打开或屏蔽	影响 BLDC 缺相保护策 略
LOSE_PHASE_THRESH OLD	缺相保护电流阈 值	0~Math_IQ(1.0)	根据调试情况设 置	
LOSE_PHASE_DBC	缺相保护执行周 期	单位: ms		
LOSE_PHASE_ADD_CN T	缺相保护执行计 数值	单位: 1		
LOSE_PHASE_JUDGE_ THRESHOLD	缺相保护最大最 小电流比值	> Math_IQ(1.0)		
MOTOR_STALL_PROTE CTION_ENABLE	堵转保护使能标 志	无	打开或屏蔽	影响 BLDC 堵转保护策 略
MOTOR_STALL_JUDGE _DBC	堵转保护判断周 期	单位: ms	根据实际需求和 调试情况设置	

参数宏定义	参数名称	参数取值	参数配置	影响范围
MOTOR_STALL_RECOV ER_DBC	堵转保护恢复周 期	单位: ms		
MOTOR_STALL_DRAG_ DUTY	堵转恢复强拖占 空比	0~Math_IQ(1.0)		
MOTOR_STALL_SPEED _THRESHOLD	堵转保护速度判 断点	0~Math_IQ(1.0)		
MOTOR_STALL_DUTY_ THRESHOLD	堵转保护占空比 判断点	0~Math_IQ(1.0)		
MOTOR_STALL_CURRE NT_THRESHOLD	堵转保护恢复电 流阈值	0~Math_IQ(1.0)		
LIMIT_BUS_CURRENT_ PROTECTION_ENABLE	限母线电流使能 标志	无	打开或屏蔽	影响 BLDC 限母线电流 策略
LIMIT_BUS_CURRENT_ LTHERSHOLD	限母线电流低点 阈值	0~Math_IQ(1.0)	根据实际需求和 调试情况设置	
LIMIT_BUS_CURRENT_ HTHRESHOLD	限母线电流高点 阈值	0~Math_IQ(1.0)		
BUS_VALTAGE_OVER	母线过压	DETECT_FAUL T	状态定义,无需 更改	影响母线电压检测状态
BUS_VOLTAGE_NORM AL	母线电压正常	DETECT_OK		
BUS_VOLTAGE_UNDE R	母线欠压	DETECT_FAUL T		
BUS_VOLTAGE_RECOV ER	母线恢复	DETECT_UNKN OWN		
BLDC_UNDER_VOLTA GE_CHECK	母线欠压检测使 能标志	无	打开或屏蔽	影响母线电压保护策略
BLDC_OVER_VOLTAGE _CHECK	母线过压检测使 能标志	无	打开或屏蔽	

参数宏定义	参数名称	参数取值	参数配置	影响范围
UNDER_VBUS_RECOV ERY_VOLTAGE	母线欠压恢复电 压	单位: V	根据实际需求和 调试情况设置	
OVER_VBUS_RECOVER Y_VOLTAGE	母线过压恢复电 压	单位: V		
UNDER_VBUS_THRES HOLD	母线欠压阈值	单位: V		
UNDER_VBUS_RECOV ERY_THRESHOLD	母线欠压恢复阈 值	单位: V		
OVER_VBUS_THRESH OLD	母线过压阈值	单位: V		
OVER_VBUS_RECOVER Y_THRESHOLD	母线过压恢复阈 值	单位: V		

4 调试

4.1 带霍尔传感器 BLDC 调试

对于带霍尔传感器的 BLDC 电机,电机控制采用六步方波。电机控制的关键在于霍尔扇区信号的检测, 捕获到霍尔反馈电机当前扇区后直接换相,并结合调速 PID 输出设置占空比进行 PWM 发波完成闭环 控制。有感 BLDC 模式中电流内环控制母线电流,速度外环控制电机转速;根据按键指令进行电机启 停,切换转动方向,加/减速等控制。参考《ATC_AC78xx_MotorApp_Development_Guide_CH》文 档,其调试流程如图 4-1 所示。

图 4-1 中 PWDT 外设为 AC780x 和 AC781x 系列为霍尔信号捕获而设计模块。AC7840x 直接采用 PWM 模块双边沿捕获功能测量霍尔信号,无需 PWDT 模块。关于 PWM 模块在带霍尔电机应用中 的初始化和中断任务接口,可参考《ATC_AC78xx_MotorApp_Development_Guide_CH》。

以 AC780x 电机调试为例,带霍尔传感器 BLDC 控制的调试主要步骤如下:

- 检查硬件环境、线路连接正确。打开 Bldc_App.uvprojx 工程文件,在 bldc_parameters_define.h 文件中,打开 SIX_STEP_SQUARE_WAVE 宏定义,打开 BLDC_HALL 宏定义,屏蔽 BLDC_SENSORLESS 无感模式宏定义。
- 2. 在 motor_parameters_define.h 文件中,根据电机参数修改极对数 POLE_PAIR_NUM,峰值转 速 MOTOR_MAX_SPEED_RPM,峰值电流 MAX_CURRENT 等适配参数。
- 3. 核查 PWDT, CTU, ADC 等外设是否正确配置。PWDT 模块配置主要包括如下设置:

PWDT 的 GPIO pinmux 配置: AC78xx 的 GPIO 具有 Multi-Function 功能,可以根据具体的 pinmux 表格选择相应的功能,将相应的 GPIO 设置 PWDT 功能。以 80-PIN 封装的 AC781x 为 例,表 4-1 给出这种封装类型下 PWDT 的 GPIO pinmux 设置的参考。

Module	PAD Name	BGA Ball Name	Function1	GPIO
PWDT	PAD_PWDT_IN1	PWDT_IN1	PWDT_IN1(I)	19
PWDT	PAD_PWDT_IN2	PWDT_IN2	PWDT_IN2(I)	20
PWDT	PAD_PWDT_IN0	PWDT_IN0	PWDT_IN0(I)	24

表 4-1 PWDT 模块 pinmux 定义

PWDT 模块用于检测霍尔扇区并计算电机转速,CTU 和 ADC 模块用于母线电流采集,必须确保外 设正确配置,能检测电机控制需要的速度环,电流环反馈方可继续调试。

在 Debug 状态下,手动缓慢转动电机转子,以霍尔 120°安装为例,若霍尔扇区 g_hallControl.currentPhase 依次按5=>4=>6=>2=>3=>1或5=>1=>3=>2=>6=>4顺序循环更新,则 PWDT 模块配置工作正常。调整功率板目前电压,若 ADC 采样母线电压值 g_bldc_adSample.busVoltageTrue 始终与供电母线电压之间保持 10 倍的比例关系: Vin = 10* g_bldc_adSample.busVoltageTrue,则 ADC 模块配置工作正常。

4. 对速度环,电流环 PI 参数进行调试整定。在确保外设配置正常后,还需对速度环,电流环的 PID 闭环控制参数进行整定调试。速度环和电流环 PID 参数调试原则相同,以速度环 PID 参数调节整

定为例:观察速度环当前速度与给定目标速度之间的关系,若出现当前速度接近目标速度过快,超 调量大并伴有振荡现象,则当前 PI 参数偏大,应减小速度环 PI 参数;若出现当前速度接近目标速 度过慢,调节时间过长,则当前 PI 参数偏小,应增大速度环 PI 参数;PID 参数整定的最终效果要 求当前速度快速接近目标速度的同时,超调量合理且控制系统稳定而不抖动发散。

5. 把以上速度环、电流环整定 PID 参数固化设置到 bldc_parameters_define.h 相应宏定义中并保存,即完成带霍尔 BLDC 的调试工作。

带霍尔传感器的 BLDC 电机调试中,常见的故障问题如下:

▶ 连接问题

autochips

- a) 电机信号线或电机 Demo 板线未连接问题,需接好所有电源,Demo 板信号线解决。
 - 1. Demo 功率板母线电源未连接,无驱动电源输入时启动电机,电机不受力(可轻松拨动)。
 - 电机霍尔信号线未连接至 Demo 驱动板霍尔信号接口, MCU 无法采集霍尔信号使电机 进入停机状态, 电机不受力。
 - 3. 电机 U/V/W 三相驱动线未连接至 Demo 功率板驱动接口, MCU 驱动发波信号无法输入 电机本体,电机不受力。
- b) 电机信号线连接错误问题, 需纠正电机霍尔信号线和 U/V/W 三相连接解决。

只有正确的电机霍尔信号线序与 Demo 驱动板霍尔 A/B/C 信号接口连接, Demo 功率板驱动 输出 U/V/W 信号与电机正确的 U/V/W 三相连接,电机才能启动稳定运转。电机信号线连接 错误时,MCU 驱动发波信号相对电机转子位置错乱,不匹配的方波控制换相会导致电机受力 后运行混乱卡顿,甚至完全卡死堵转。堵转时母线堵转电流大,有损坏 Demo 功率板风险,所以需根据电机和 Demo 板定义,纠正电机霍尔信号线和 U/V/W 三相连接问题。

- c) 电机信号线部分未连接问题, 需连接电机接触不良信号线解决。
 - 当电机霍尔信号部分接触不良时,MCU只能测量到部分有效霍尔扇区,方波控制会使电 机受力后吸引到固定电机位置区间卡住,无法连续稳定运转。
 - 当电机 U/V/W 三相线部分接触不良时,MCU 驱动电机发波信号仅接线部分有效。六步 方波不完整,电机无法连续受力驱动,无法启动运转。
- ▶ 保护报警问题

当控制电机启动,电机没有受力启动,有可能在启动指令前或启动过程中检测到故障报警而使电机进入 停机状态,电机不受力。常见的故障有母线电源过压,欠压,缺相,堵转等。控制电机启动故障时,需 在 g_bldc_protect 中查看故障,并调整电机启动工况或保护功能参数解决问题。

4.2 无感 BLDC 调试

对于无传感器的 BLDC 电机,电机控制仍然采用六步方波,与霍尔 BLDC 模式的区别在于霍尔扇区的 获取方式以及换相点的差异。在无霍尔传感器的情况下,经典 BLDC 电机控制一般采用反电动势过零

64/85

点来模拟重构霍尔信号。AC78xx 系列 MCU 中集成了 ACMP 比较器,采用硬件比较器 ACMP 的方案 来检测反电动势过零点。同时反电动势越大 ACMP 输出结果越准确,故无感 BLDC 还需要开环加速的 过程。由于反电动势过零点与霍尔信号之间相位关系,检测到反电动势过零点后需延迟 30 度电角度后 换相,换相 delay 由电机转速计算而来。参考《ATC_AC78xx_MotorApp_Development_Guide_CH》 文档,其调试流程如图 4-2 所示。

图 4-2 无感 BLDC 调试流程图

根据以上调试流程图,无感 BLDC 控制的调试主要分以下步骤:

- 检查硬件环境、线路连接正确。打开 Bldc_App.uvprojx 工程文件,在 bldc_parameters_define.h 文件中,打开 SIX_STEP_SQUARE_WAVE 宏定义,打开 BLDC_SENSORLESS 无感宏定义, 屏蔽 BLDC_HALL 有感宏定义。
- 2. 在 motor_parameters_define.h 文件中,根据电机参数修改极对数 POLE_PAIR_NUM,峰值转 速 MOTOR_MAX_SPEED_RPM,峰值电流 MAX_CURRENT 等适配参数。
- 3. 核查 ACMP, CTU, ADC 等外设是否正确配置。

ACMP 模块用于检测反电动势过零点并触发换相,在电机获取初始位置后开始比较过零点;CTU 和 ADC 模块用于母线电流采集,其检验方法霍尔 BLDC 模式相同,可参考霍尔 BLDC 模式。

4. 调试无感 BLDC 模式开环加速参数。无感 BIDC 启动过程先预定位到固定磁场扇区后,需调试开 环加速参数。适当增加开环加速占空比 MAX_DUTY_SENSORLESS_START 和

MOTOR_DUTY_STEP,同时减小开环加速时间 BLDC_SENSORLESS_INIT_DELAY_TIME, BLDC_SENSORLESS_MIN_DELAY_TIME, BLDC_SENSORLESS_STEP_DELAY_TIME 即 可调整开环加速过程。开环占空比不宜过大,否则会引起启动过流等问题,只需加 BLDC 加速带 动转起来即可。只要开环加速参数合理,能正常检测到反电动势过零点,便可闭环切入无感 BLDC 工作。

- 5. 对速度环,电流环 PI 参数进行调试整定。在确保外设配置正常后,还需对速度环,电流环的 PID 闭环控制参数进行整定调试。速度环和电流环 PID 参数调试原则相同,以速度环 PID 参数调节整 定为例:观察速度环当前速度与给定目标速度之间的关系,若出现当前速度接近目标速度过快,超 调量大并伴有振荡现象,则当前 PI 参数偏大,应减小速度环 PI 参数;若出现当前速度接近目标速 度过慢,调节时间过长,则当前 PI 参数偏小,应增大速度环 PI 参数; PID 参数整定的最终效果要 求当前速度快速接近目标速度的同时,超调量合理且控制系统稳定而不抖动发散。
- 6. 把以上开环加速参数,速度环,电流环整定 PID 参数固化设置到 bldc_parameters_define.h 相应 宏定义中并保存,即完成无感 BLDC 的调试工作。

无感 BLDC 电机调试中,常见的故障问题除 4.1 节外,还有低速稳定性问题。解决无感 BLDC 在低转 速时稳定性问题主要方法有:

▶ 拓展反电动势检测精度

autochips

无感 BLDC 控制主要通过检测反电动势过零点,而反电动势幅值与电机转速正相关,因此低速时 反电动势幅值小限制了过零检测的准确性。可以通过调整反电动势分压电路,将分压后三相反电动 势最大限度放大拓展至 ACMP 检测最大电压范围(同 ADC 采样范围),增加了低速下反电动势幅 值,提高反电动势检测精度。

▶ 增加反电动势噪声检测补偿

反电动势过零点一旦检测错误,就会造成无感 BLDC 换相时序误差,电机运行抖动。虽然反电动势检测电路中增加滤波深度可保证信号无噪声,但造成反电动势检测时序滞后也是无感 BLDC 控制中缺陷。对反电动势噪声在过零检测造成的误差进行补偿处理,可克服反电动势噪声影响,提高运行稳定性。检测到反电动势过零点后,开始延迟 30 电角度计时。同时继续检测反电动势过零点结果,若检测到过零点后又出现过零点之前结果,则说明之前检测的过零点为反电动势噪声信号。此时将延迟电角度的计时值增加,即可有效避免反电动势噪声的影响,提高电机运转稳定性。

4.3 带霍尔传感器 FOC 调试

对于电机带霍尔传感器的 FOC 控制, Demo 程序中进行三相电流采样还原,并对相电流进行 clark, park 变换后分别对 D 轴和 Q 轴进行电流环 PID 闭环控制,最终根据运算所得向量进行 SVPWM 向量 调制,对 UVW 三相 MOS 管进行通断控制,完成 FOC 算法对电机的控制。带霍尔 FOC 控制的难点在 于如何将霍尔的脉冲式开关信号量转换成电机转子电角度。Demo 程序中是通过霍尔自学习算法先学习 到霍尔线序及电机转子初始位置,启动后根据霍尔传感器解算出的速度信息进行持续积分对转子电角度 进行更新,并在扇区切换时检测误差并补偿。带霍尔传感器的 FOC 控制的调试流程如图 4-3 所示。

图 4-3 带霍尔的 FOC 调试流程图

根据以上调试流程图,带霍尔传感器 FOC 控制的调试主要分以下步骤:

- 检查硬件环境、线路连接正确。打开 Motor_App.uvprojx 工程文件,打开 drive_parameters_define.h 中宏定义 FOC_SINE_WAVE,打开宏定义 HALL_SENSORS。
- 确认电机及霍尔与 Demo 板连接无误后上电 Debug,在 Debug watch 窗口中将 defHallSensor.hallSelfLearnEnable 的值设 1,采用配置的自学习模式及自学习电流环参数进行 霍尔自学习运算,电机将启动霍尔自学习功能。
- 在进行霍尔自学习时,电机会以小角度来回摆动。若 g_hallSelfLearn.selfLearnStage 变为 2,且 g_hallSelfLearn.selfLearnIndex 的值为 22,则霍尔自学习失败。霍尔自学习结束后,通过 debug 窗口记录学习到的 g_ hallSelfLearn.selfLearnOrder 和 g_ hallSelfLearn.selfLearnTheta 数 值,分别填写到 Drive_parameters_define.h 中 HALL_SELF_LEARN_ORDER 和 HALL_SELF_LEARN_THETA。
- 4. 影响自学习结果的主要原因是自学习电流设定大小、电流环参数。当霍尔自学习失败时,用户可先 检查霍尔线是否连接完好,然后适当调整霍尔自学习电流。同时建议用户在空载静止状态下启动自 学习过程。若采取以上措施霍尔自学习仍然失败,用户可考虑适当调整电流环参数。
- 5. 完成以上调试过程自学习成功后,电机即可根据学习到的初始角度启动。启动后 PWDT 模块记录 霍尔正负脉宽并计算出电机转子速度,转子速度积分运算可保证电机转子位置实时更新,进行 FOC 闭环运算。用户可进一步通过按键进行加减速等操作设置来验证速度环,电流环的 PID 参 数。关于速度环参数验证整定,用户可参考带霍尔传感器 BLDC 速度环调试。电流环参数验证整 定与速度环类似,在 Debug 状态下修改 g_focVarsCtrl.iqRef 给定 Q 轴目标电流,观察目标电流与 实际采样电流之间的关系,若出现当前电流接近目标电流过快,超调量大并伴有振荡现象,则当前

Q 轴电流环 PI 参数偏大,应减小 PI 参数;若出现当前电流接近目标电流过慢,调节时间过长,则 当前 Q 轴电流环 PI 参数偏小,应增大电流环 PI 参数; D 轴电流环 PID 参数调试和整定与 Q 轴同 理。PID 参数整定的最终效果要求当前电流快速接近目标电流的同时,超调量合理且控制系统稳定 而不抖动发散。

6. 把以上速度环,电流环整定 PID 参数固化设置到 Drive_parameters_define.h 相应宏定义中并保存,即完成带霍尔 FOC 的调试工作。

4.4 带正交编码器 FOC 调试

autochips

电机带正交编码器的 FOC 控制与霍尔 FOC 控制的差异在于转子电角度的获取方式。 Demo 程序中编码 FOC 控制电角度来源于 A/B 相正交编码脉冲信号,配置 PWM 模块在正交编码捕获模式来采集编码器脉冲计数。编码 FOC 的优势在于编码器角度精度更高,且不需要复杂的算法运算即可获得有效电角度;缺点在于缺少归零 Z 信号和角度基准需要启动前进行强吸置位,且累计丢失脉冲计数如果不及时校正将影响电机运行。正交编码器 FOC 的缺点可通过归零 Z 信号或辅助霍尔传感器来解决。正交编码器的 A/B 相接线会影响捕获脉冲计数极性,因此需在正式 Debug 电机前检查编码器极性。编码器极性正确需保证从电机轴端观察电机,顺时针转动电机时 PWM 捕获脉冲计数 PWMx->CNT 增加,逆时针转动时 PWM 捕获脉冲计数 PWMx->CNT 增加,逆时针转动时 PWM 捕获脉冲计数 PWMx->CNT 增加,逆时针转动时 PWM 捕获脉冲计数 PWMx->CNT 增加,逆时针转

图 4-4 正交编码器 FOC 调试流程图

根据以上调试流程图,带正交编码器 FOC 控制的调试主要分以下步骤:

 检查硬件环境、线路连接正确。打开 Motor_App.uvprojx 工程文件,打开 drive_parameters_define.h 中宏定义 FOC_SINE_WAVE,打开宏定义 ENCODER_SENSORS。

autochips

- 根据电机的技术参数,并参考 3.1 节修改 motor_parameters_define.h 中相应的电机参数宏定义。 设置 POLE_PAIR_NUM, MAX_CURRENT 和 ENCODER_LINES(A 相脉冲数/机械周期)等参数。
- 确认电机及编码器与 Demo 板连接无误后上电 Debug,将 g_encoderSensor.encoderCnt 添加到 Watch 窗口中,顺时针转动电机若 g_encoderSensor.encoderCnt 计数增加则编码器接线极性正常;若 g_encoderSensor.encoderCnt 计数减小则编码器接线极性反向,将 motor_parameters_define.h 中默认电机极性 ENCODER_POLARITY 由 0 更改为 1 后编译重新 debug,确保顺时针转动电机时 g_encoderSensor.encoderCnt 计数增加。
- 4. 完成以上 Debug 过程后,电机即可根据 PWMO 捕获脉冲计数计算电机角度,并在启动 ALIGN 后实时更新电角度启动运行。启动后 PWM 模块记录正交编码器脉冲计数,并在 Encoder_ElecAngleCalc 函数中计算更新电角度,在 1ms 任务中由 Asr_EstSpeedCalc 函数计算电机运行速度,进行 FOC 闭环运算。用户可进一步通过按键进行加减速等操作设置来验证速度环,电流环的 PID 参数。关于速度环参数验证整定,用户可参考带霍尔传感器 BLDC 速度环调试。电流环参数验证整定与速度环类似,在 Debug 状态下修改 g_focVarsCtrl.iqRef 给定 Q 轴目标电流,观察目标电流与实际采样电流之间的关系,若出现当前电流接近目标电流过快,超调量大并伴有振荡现象,则当前 Q 轴电流环 PI 参数偏大,应减小 PI 参数;若出现当前电流接近目标电流过慢,调节时间过长,则当前 Q 轴电流环 PI 参数偏小,应增大电流环 PI 参数; D 轴电流环 PID 参数调试和整定与 Q 轴同理。PID 参数整定的最终效果要求当前电流快速接近目标电流的同时,超调量合理且控制系统稳定而不抖动发散。
- 5. 把以上速度环,电流环整定 PID 参数固化设置到 drive_parameters_define.h 相应宏定义中并保存,即完成带编码器 FOC 的调试工作。

4.5 带 Hall 传感器与 AB 编码器 FOC 调试

该模式为霍尔传感器与 AB 编码器共同进行转子位置角度估算与频率估算,该模式可实现更准确的角度 估算。对该模式调试前,需要首先分别单独调试 hall 传感器模式与 AB 编码器模式,然后将控制方式改 为 ENCODER_HALL_SENSORS 模式,即可正常运行电机。

图 4-5 霍尔传感器与 AB 编码器模式调试流程图

4.6 无感 FOC 调试

无感 FOC 控制算法支持无感 FOC 滑模观测器算法、无感 FOC 磁链观测器算法与无感 FOC 模型参考 自适应(MRAS)算法。

4.6.1 无感 FOC 滑模观测器调试

对于电机的无感 FOC 控制,其 FOC 控制核心原理同带霍尔 FOC 控制。无传感器控制的难点在于转子 角位置的获取,Demo 程序中 FOC 算法可通过滑模观测器进行电机两相反电动势 ea, eb 向量的估算, 然后通过求其反正切或者锁相环 PLL 方式得到电机转子电角度,从而将无感 FOC 控制问题转换为有感 (转子电角度)FOC 控制。无感 FOC 滑模观测器控制的调试流程如图 4-6 所示。

图 4-6 无感 FOC 滑模观测器调试流程图

根据以上调试流程图,无感 FOC 滑模观测器控制的调试主要分以下步骤:

- 检查硬件环境、线路连接正确。打开 Motor_App.uvprojx 工程文件,打开 drive_parameters_define.h 中参数宏定义 FOC_SINE_WAVE 选择 FOC 矢量控制,打开宏定义 SENSORLESS,将其设置为无传感器模式。打开宏定义 SMC_OBSERVE 并屏蔽宏定义 FLUX_OBSERVE,使用无感 FOC 滑模观测器控制。
- 打开宏定义 ATAN_STATE_OBSERVER 或者 PLL_STATE_OBSERVER,前者为反正切角度获 取方法,后者为 PLL 锁相环角度获取方法。当选择 ATAN_STATE_OBSERVER 时,若打开宏定 义 ELEC_FREQUENCE_HIGH,则在 FOC 中断中根据角度计算当前频率;若打开宏定义 ELEC_FREQUENCE_LOW,则在 1ms 时基中计算当前频率
- **3.** 测量电机的技术参数,并参考 3.1 节修改 motor_parameters_define.h 中相应的电机参数宏定义。 电机需要测量的参数主要有 STATOR_RS, LD, LQ 和 POLE_PAIR_NUM 等。
- **4.** 打开 drive_parameters_define.h 中 OPEN_LOOP(开环模式), 打开 IF_STARTUP(电流闭环启动 模式)。并在开环模式下启动电机。
- 5. 倘若开启初始位置辨识功能 PULSE_INJECTION,则先进行完成初始辨识功能,然后 IF 启动; 否则直接进入 IF 启动流程。初始位置辨识功能需要配置的参数是 SELF_LEARN_THRES。该变 量表示初始位置辨识时脉冲电流阀值,与电机电感大小有关,在 Keil 软件 Debug 状态中观察

g_pulseInject.busCur[] 数 组 变 量 , 若 最 大 值 与 第 二 大 值 之 间 差 距 较 小 , 可 适 当 增 大 SELF_LEARN_THRES。在 Keil 软件 Debug 状态下 Watch 窗口中观察变量 g_startUpCtrl. startUpFlag 直到其变为 3;

- 6. 通过设置 OPEN_LOOP_SPEED_HZ(开环切换频率)、CURVE_TYPE(开环启动曲线类型)、 TIME_DURATION(开环启动曲线时长)、FREQ_REF_VALUE(开环启动曲线频率值)、 CUR_REF_VALUE(开环启动曲线电流值)将电机开环运转至设定的开环切换频率。
- 7. 设置 DUBUG_DAC_CH0_PARAMID 为 157, DUBUG_DAC_CH1_PARAMID 为 158,将 Demo 板上丝印 JP11 的两个引脚引到示波器两个通道进行观察。JP11 输出的是 PWM0 模块的两 个通道,每个通道配有 RC 低通滤波电路,滤波电路将 Debug 数字脉冲信号转换成模拟信号输 出,滤波截止频率 330Hz。PWM0 两通道接示波器后,屏幕上打印的是开环给定同步转速积分电 角度和滑模观测器估计转子电角度,只有两波形相似度高且波形平滑才能进行后续闭环调试过程。
- 8. 开环调试,将电机运行到固定转速(通过 DAC 观察估测电气角)

autochips

通过调整开环启动曲线参数,使电机顺利运行找到最佳的 IF 启动斜率,并确认最终的闭环切换频率(以估测电气角平滑为标准)。调试中需要注意以下问题:

- 若估计转子电角度曲线波动噪声大,与积分电角度波形差异大,则用户需调整滑模观测器参数。用户改为用户更改滑模开环参数 SMC_KSLIDE0, SMC_KSLF0, SMC_MAXERR0, 使估计转子电角度逼近积分电角度曲线,让滑模观测器估算出更好的效果如图 4-7 所示。
- 2、 根据估测波形的状态,适当调整开环切换频率,默认是 10Hz。
- 9. 在以上开环调试过后,通过 DAC 观察估测电气角波形应该为规则三角波,此时可设置电机为闭环运转模式。将开环调试的 SMC_KSLIDE0,SMC_KSLF0,SMC_MAXERR0 参数同步到闭环参数 SMC_KSLIDE1,SMC_KSLF1,SMC_MAXERR1中。闭环效果也可通过修改SMC_KSLIDE1,SMC_KSLF1,SMC_MAXERR1来进行调整。注意 SMC_KSLF1由SMC_KSLF0自动计算获取。用户需关闭 OPEN_LOOP(闭环模式)并打开 CLOSE_LOOP(闭环模式)定义,为无感 FOC 使用估计转子电角度替代积分电角度进行 FOC 闭环运算做准备。
- 10. 当打开宏定义 FULL_ORDER_SMC 时,使用全阶滑模算法,此时在第9步调试参数基础上,新 增了 FULL_SMC_GAIN 全阶滑模增益系数及 FULL_SMC_FILT 全阶滑模滤波使能开关。当 FULL_SMC_FILT 全阶滑模滤波使能开关配置为 DISABLE 时,第9步中的滤波系数 SMC_KSLF0 和 SMC_KSLF1 两个滤波系数不再起作用;当 FULL_SMC_FILT 全阶滑模滤波使 能开关配置为 ENABLE 时,滑模算法的所有参数均参与运算。FULL_SMC_GAIN 全阶滑模增益 系数越大,则响应越快,但转速波动相应亦较大。
- 11. 以上宏定义设置完毕重新编译后,用户可重新上电 Debug 无感 FOC 闭环模式。此时,用户仍然通过示波器继续观察估计转子电角度和积分电角度曲线,若两者变为重合曲线说明转子积分电角度切换到估计电角度闭环成功,无感 FOC 就能采用估计转子电角度进行正式的 FOC 运算。
- 12. 开环切换闭环过程中,开环角度会慢慢向估算角度靠近,防止角度突变。如果角度估算波形良好情况下,闭环切换停机,可能是电机阻力较大,可通过增加平滑电流 SPD_SMOOTH_CUR、增加开环频率 OPEN_LOOP_SPEED_HZ、增加速度环 PI 来解决切换停机问题。
- 13. 闭环成功后,用户可参考带霍尔 FOC 方法进行速度环,电流环 PID 参数整定,并把以上速度环, 电流环整定 PID 参数固化设置到 drive_parameters_define.h 相应宏定义中并保存,完成无感 FOC 的调试工作。

图 4-7 滑模观测器参数合理估算效果图

4.6.2 无感 FOC 磁链观测器调试

autochips

磁链观测器无感算法原理为:根据电压方程计算定子磁链 alpha, beta 分量,再根据定子磁链得到转子 永磁体磁链 alpha, beta 分量,转子位置角可对转子永磁体磁链 alpha, beta 分量求反正切,或通过内 差法构造 PLL 锁相环得到。

调试步骤:

- 检查硬件环境、线路连接正确。打开 Motor_App.uvprojx 工程文件, drive_parameters_define.h 中打开宏定义 FOC_SINE_WAVE, 意为选择 FOC 矢量控制。
- 2. 打开宏定义 SENSORLESS, 意为选择无感模式。
- 3. 打开宏定义 IF_STARTUP,选择启动方式为 I/F 启动。

- 4. 打开宏定义 FLUX_OBSERVE,选择磁链观测器模式,这里需屏蔽 SMC_OBSERVE 宏定义。
- 5. 打开宏定义 ATAN_STATE_OBSERVER 或者 PLL_STATE_OBSERVER,前者为反正切角 度获取方法,后者为 PLL 锁相环角度获取方法。当选择 ATAN_STATE_OBSERVER 时,若 打开宏定义 ELEC_FREQUENCE_HIGH,则在 FOC 中断中根据角度计算当前频率;若打开 宏定义 ELEC_FREQUENCE_LOW,则在 1ms 时基中计算当前频率。
- 6. motor_parameters_define.h 中配置好电机参数以及 hwboard_parameters_define.h 中配置 好硬件参数后即可进行磁链观测器调试。
- 7. 调试中可先选择开环模式,观察估测角度波形是否正常,以及开环速度是否在同步速度附近, 若角度、速度无异常可切换至闭环调试;若角度正常,速度偏离同步速度,反正切法可根据调整 drive_parameters_define.h 中速度滤波系数 ATAN_SPEED_FILT_H 或 ATAN_SPEED_FILT_L。若选择 PLL 锁相环法可调整 drive_parameters_define.h 中 COEFFPLL_FLUX 来更改 PLL 的 PI 参数。
- 8. 若估测角度还不正常,还可以在 drive_parameters_define.h 调整低通滤波系数 FLIT_COEFF 来进行调试,开环角度正常但是无法闭环的话也可以更改此滤波系数 FLIT_COEFF;也可以调整 COMPCOF_UPLIMIT 磁链观测器反电势补偿上限的值,其值越 大,则补偿越接近真实值。
- 9. 其他闭环调试同 FOC 滑模控制闭环调试一样,两者开环启动到闭环切换过程均一致。

4.6.3 无感 FOC MRAS 观测器调试

autochips

MRAS 即模型参考自适应算法,通过建立一个不含未知参数的参考模型,一个含未知参数的可调模型,两个模型具有相同的物理意义,两个模型同时工作,实现控制对象的输出实时跟踪参考模型,求得可调 模型的输出量和参考模型输出量的差值,再通过合适的自适应率来调节可调模型的参数,系统的收敛性 可以通过 Popov 的超稳定性理论来分析。

调试步骤:

- 检查硬件环境、线路连接正确。打开 Motor_App.uvprojx 工程文件, drive_parameters_define.h 中打开宏定义 FOC_SINE_WAVE, 意为选择 FOC 矢量控制。
- 2. 打开宏定义 SENSORLESS, 意为选择无感模式。
- 3. 打开宏定义 IF_STARTUP,选择启动方式为 I/F 启动。
- 4. 打开宏定义 MRAS_OBSERVE,选择模型参考自适应模式,这里需屏蔽 SMC_OBSERVE 以及 FLUX_OBSERVE 宏定义。
- 5. motor_parameters_define.h 中配置好电机参数以及 hwboard_parameters_define.h 中配置 好硬件参数后即可进行 MRAS 算法调试。这里特别注意的是, MRAS 无传感算法需要使用电

机参数中的反电势电压系数 VOLTAGE_CONSTANT,该系数为电机在 1000rpm 时相反电势的平均值,需手动测量或咨询电机厂获取该参数,该参数对 MRAS 算法角度估算准确性影响较大。

- 6. 调试中可先选择开环模式 OPEN_LOOP,观察估测角度波形是否正常,以及开环速度是否在 同步速度附近,若角度、速度无异常可切换至闭环调试。
- 7. 若估测角度及速度异常,可以在 drive_parameters_define.h 调整 MRAS 观测器的 ALPHA_COEFF 和 BETA_COEFF 来进行调试,这两个参数越大,MRAS 算法动态响应性 越快,但系统稳定性会降低;参数越小,响应性越慢,但系统越稳定。需在实际应用中寻找合 适参数,保证响应性的同时系统又不失稳。
- 8. 其他闭环调试同 FOC 滑模观测器以及磁链观测器闭环调试一样,两者开环启动到闭环切换过 程均一致。

4.7 母线电流估算调试

autochips

母线电流估算原理为:在一个开关周期内,根据三相相电流与母线电流的关系计算出三相相电流各自的 作用时间占比,然后将三相相电流采样值的加权平均值作为直流母线电流预估值,其中相电流的权系数分 别为各自的作用时间占比。

调试步骤:

- 检查硬件环境、线路连接正确。drive_parameters_define.h 中打开宏定义 POWER_DCCUR_EST_ENABLE,可使能母线电流估算功能。打开宏定义 FOC_SINE_WAVE 以使能 FOC 控制。
- 在 keil 的 watch 窗口添加 g_dcCurEst.dcCurTrue 观察变量,此变量为估算的母线电流实际 值。注意此变量为了提高显示精度,默认放大 100 倍,假如 g_dcCurEst.dcCurTrue =150, 代表当前母线电流为 1.5A。
- 3. 在 keil 的 watch 窗口添加 g_dcCurEst.dcCur 观察变量,此变量为母线电流 Q15 格式的标幺 值,标幺的电流基值为 motor_parameters_define.h 中电机参数值 MAX_CURRENT。

假如当前电机标幺电流 MAX_CURRENT 为 20A,若当前 g_dcCurEst.dcCur 值为 10000,此 时母线电流真实值 = 10000 / 32768 * 20 = 6.1A。

4. 特别说明: 若电机相电流波形毛刺比较多,可能造成估算出的母线电流值误差偏大。

4.8 电机参数识别

无感 FOC 控制对电机参数敏感,在使用无感 FOC 驱动 PMSM 时首先需要获取较为准确的电机参数, 如定子电阻 Rs,定子电感 Ls,转子磁链(反电动势常数)等。电机参数可通过直接测量法,使用电桥 等试验设备进行测量;也可通过相关软件算法实现。试验测量法可参考《ATC 电机主要参数介绍及测 量方法说明》。下面介绍软件算法获取电机参数。

调试步骤:

- 检查硬件环境、线路连接正确。打开 Motor_App.uvprojx 工程文件,打开 motor_parameters_define.h 文件,正确填写电机类型 MOTOR_TYPE、电机极对数 POLE_PAIR_NUM、最高转速 MOTOR_MAX_SPEED_RPM、最大电流 MAX_CURRENT 等宏定义值。对于永磁同步电机,MOTOR_TYPE 设为 MOTOR_SPMSM 或 MOTOR_IPMSM 均可,可在完成参数辨识后通过 dq 电感的差别明确电机类型: dq 电感值基 本一致为 MOTOR_SPMSM, dq 电感差异较大为 MOTOR_IPMSM。
- 2. 编译后下载到 demo 板,在 Debug watch 窗口中添加结构体 g_paramIdentify,其中,子结构体 pParamIdentifyCfg 的变量 identifyParSel 的 bit0 表示进行定子电阻识别;对于PMSM,bit1 表示进行定子电感识别,bit2 表示进行转子磁链(反电动势常数)识别;对于异步电机,bit1 表示进行转子电阻与漏感辨识,bit2 表示进行互感辨识。其中,PMSM 的转子磁链识别与异步电机的互感辨识均需要电机可脱离负载自由旋转。例如将此变量值设为 3,则表示进行定子电阻与定子电感的识别。
- 在 Debug watch 窗口中将 g_paramIdentify 子结构体 pParamIdentifyCtrl 的变量 identifyCtrl 设为 1,进入参数辨识运行模式。按下控制板上的启停键,或在 Debug watch 窗 口中将 g_mcStatus 的值修改为 12(IDENTIFY),则开始执行电机参数识别流程。
- 4. 电机参数识别结果在 g_paramIdentify 的子结构体 pParamIdentifyCtrl 中。其中, rsId 为定 子电阻值; ld 和 lq 为 PMSM 定子电感的 dq 轴分量, bemf 是 PMSM 电机反电动势常数; rrId 是异步电机的转子电阻值, lsId 和 lrId 是异步电机定子电感与转子电感, lmId 是异步电机的互感。
- 5. 记下步骤 5 的辨识结果,打开 motor_parameters_define.h 文件,将 rsId 的值填写到 STATOR_RS 宏定义值;若是 PMSM,则将 ld 的值填写到 LS 和 LD 宏定义值;lq 的值填写 到 LQ 宏定义值;bemf 的值填写到 VOLTAGE_CONSTANT 宏定义值;若是异步电机,则将 rrId 值写到 ROTOR_RS、lsId 与 lrId 值写给 LS 和 LR, lmId 值写给 LM。再次按下控制板 上的启停键,或在 Debug watch 窗口将 g_paramIdentify 子结构体 pParamIdentifyCtrl 的 变量 initCtrl 设 1 则退出参数辨识模式,回到待机状态。保存工程并编译下载,即可使用当前 电机的参数。
- 6. 用户同时可使用 ATC Motor Studio 工具实现电机参数识别,具体方式可参考文档《ATC Motor Studio 使用指南》中"参数识别"章节内容。

4.9 Hall 传感器自学习

带 Hall 传感器的 FOC 电机控制会因不确定 Hall 顺序,无法得到所对应的电机角度,需要对电机 Hall 传感器安装信息进行自学习。

调试步骤:

- 检查硬件环境、线路连接正确。打开 Motor_App.uvprojx 工程文件,打开 drive_parameters_define.h 文件,打开宏定义 HALL_SENSORS,并屏蔽其他控制方式宏定 义,以选择 Hall FOC 控制方式。
- 2. 编译下载后,在 debug watch 窗口中添加 g_hall 结构体,将子结构体 pHallCfg 变量 hallSelfLearnMode 设为 1,则只学习 Hall 传感器的顺序及角度;设为 2,则还可学习 Hall 传感器六个扇区中的最大及最小扇区宽度,以考察 Hall 扇区的均匀性。需要注意的是,设为 2 时,Hall 自学习功能会驱动电机旋转。
- 将 g_hall 子结构体 pHallCfg 变量 hallSelfLearnEnable 设为 1,按下控制板上 START/STOP 按键,则开始 Hall 自学习。
- 自学习结果可通过观察 g_hallSelfLearnBuffer 结构体记录下来,其中,变量 selfLearnOrder 的值替换 drive_parameters_define.h 中 HALL_SELF_LEARN_ORDER 宏定义值;变量 selfLearnTheta 替换 drive_parameters_define.h 中 HALL_SELF_LEARN_THETA 宏定义 值。
- 5. 保存工程并重新编译、下载,即可运行 Hall FOC。
- 6. 当电机三相线接线顺序改变后,需要重新按照上述 1~5 的步骤进行 Hall 传感器自学习。
- 7. 若自学习进行中报故障: HALL_SELF_LEARN_FAILURE,则需要检查霍尔信号线是否可 靠连接。
- 8. 若使用自学习的结果无法正常运行 Hall FOC,在确保霍尔信号线可靠连接后,调整结构体 pHallCfg 变量 learnCur 的值,重新按照 1~5 的步骤进行 Hall 传感器自学习,直到 Hall FOC 可正常运行。构体 pHallCfg 变量 learnCur 的意义是自学习阶段的注入电流幅值,程序 值 16384 表示 0.5 倍电机最大电流。为避免注入电流过大造成意外事故,构体 pHallCfg 变量 learnCur 的值不可大于 16384。
- 9. 用户同时可使用 ATC Motor Studio 工具实现霍尔传感器自学习功能,具体方式可参考文档 《ATC Motor Studio 使用指南》中"参数识别"章节内容。

4.10 使用 Motor Studio 调试电机

使用 ATC Motor Studio 电机上位机工具可快速实现用户电机 + ATC Motor 算法套件的适配调试。使用 Motor Studio 调试电机的流程图如图 4-9 所示。

图 4-8 Motor Studio 界面

ATC Motor Studio 的详细使用方法可参考《AutoChips Motor Studio 使用指南》。

5 典型问题

5.1 电路硬件相关配置计算

本节主要描述与电路相关的电机控制系统参数计算对应关系。用户如需对相关参数进行修改适配,必须参考硬件原理图,并结合以下计算描述进行。

(1) 电流采样运放增益 OP_AMPLIFICATION_GAIN 主要由运放前级正负端以及前后级之间配置电阻决定。以U相电流模拟电压采样为例,U相电流模拟信号经过运放U12进行增益放大后输出至MCU 模块采样,具体原理图如图 5-1 所示。

图 5-1 U 相电流采样原理图

根据运放输入端"虚断"和"虚短"原则进行分析推导可知:

$$U_{XADC_{IN4}} = U_{PO_{REF}} + 12(U_{I_{U}} - U_{I_{BUS}})$$

故运放输出和输入两端压差之间的运放增益系数 OP_AMPLIFICATION_GAIN 为 12,具体计算公式 为:

$\frac{R110}{R104 + R105}$

(2)母线电压分压系数 VBUS_ATTENUATE_FACTOR 主要由母线电压分压电路中配置电阻决定。 该分压系数要根据母线电压和参考电压之间比例系数设置,分压后采样电压不能超出 ADC 参考电压, MCU 才能再进行 AD 采集。母线电压分压电路部分具体原理图如图 5-2 所示。

图 5-2 母线电压分压原理图

根据图 5-2 进行分析推导可知:

 $U_{XADC_IN8} = \frac{(R185//R186//R187) \times U_{M2_DC}}{(R185//R186//R187) + R184 + R183}$

故母线电压分压系数 VBUS_ATTENUATE_FACTOR 为 21,具体计算公式为:

 $\frac{(R185//R186//R187) + R184 + R183}{R185//R186//R187}$

(3) PWM0 调试 Debug 电路部分的滤波性能主要由 RC 滤波电路决定,其具体原理图如图 5-3 所示。

图 5-3 Debug 电路滤波原理图

结合 RC 滤波电路特性,根据图 5-3 进行分析推导可知:

Debug 电路输出信号滤波介质频率 f_c 为 329Hz, 具体计算公式为: $f_c = \frac{1}{2\pi R^c}$.

5.2 参数标幺值、实际值对应关系说明

MCU 相较于 DSP 一般存在主频偏低的缺点,这直接导致乘、除等复杂运算耗时飙升;而对未集成 FPU 的 MCU 而言,浮点数据的运算耗时更是雪上加霜。因此控制电机运行时,需提前将所控制的电 流、转速、位置等参数量标幺转换到某个定标Q格式,将耗时的浮点运算等效为定点运算。实际物理量 在程序代码中采用标幺值参与计算,无特殊说明则AC78xx例程中均采用Q15格式。

标幺值与实际值之间的对应关系为:

其中实际值 real 是指物理量的真实值;标幺值 pu 指此物理量在算法代码运行时的程序值;基值 base 指此物理量为进行标幺转化而选取的基准数值;放大系数 k 是为了便于代码化处理和保证计算精度。k 与定标 Q 格式对应,k = 2^Q;当采用 Q15 格式时,放大系数 k 即为 2^15。例如:若电流量的基值为 1A,电流实际值为 0.5A,放大系数为 4096(2^12),则定标到 Q12 格式下电流的标幺值为:

$$\frac{0.5A}{1A} \times 4096 = 2048$$

AC78xx 例程中电压量、电流量、频率量的基值分别为 NORMAL_BUS_VOLTAGE、 MAX_CURRENT与 BASE_FREQ。

举例:

1)程序中设置电压基值为12V,在程序中的宏定义为:

#define NORMAL_BUS_VOLTAGE 12

杰发科技机密文件

若程序中母线电压 g_adcTransform.vdcPu 的值为 30000,则此时母线电压的实际值为 Udc = 30000 / (2^15) * 12 = 10.98V。

2)程序中设置电流基值为 20A,在程序中的宏定义为:

#define MAX_CURRENT 20

autochips

若设定 FOC 开环启动电流为 Math_IQ(0.2),在程序中的宏定义为:

#define OPEN_LOOP_CURRENT Math_IQ(0.2)

则表示实际的开环启动电流值为 0.2 * 20 = 4(A)。

3)程序中设置频率基值根据电机极对数与最高转速计算得到,在程序中的宏定义为:

#define BASE_FREQ (uint16_t)(MOTOR_MAX_SPEED_RPM * POLE_PAIR_NUM / 60)

若程序中运行频率 g_speedCommand. speedTarget 的值为 3276, 电机极对数为 2, 最高转速为 5400rpm,则表示此时相电流的频率为 f = 3276 / (2^15) * (5400*2/60) = 18(Hz)。

5.3 无传感 FOC 无法顺利切换闭环问题

对于无传感器 FOC 的应用,会先以开环方式启动电机,待电机转速足够使电流观测器估测到正确电角度时再切入闭环。表 5-1 介绍无感 FOC 无法进入闭环的原因及对应解决方法。

序号	原因	解决方法
1	电机参数设置不 合适	使用电桥测量或向电机厂咨询 PMSM 的定子电阻(STATOR_RS)、d 轴电感 (LD)、q 轴电感(LQ)、电机极对数(POLE_PAIR_NUM)、最大运行相电流峰值 (MAX_CURRENT)、电机最大转速(MOTOR_MAX_SPEED_RPM)等信息,并正 确填入 motor_parameters_define.h 文件中。
2	无传感 FOC 控制 参数设置不合适	滑模观测器控制方式需要调试的参数在 drive_parameters_define.h 文件中, 包含 SMC_KSLIDE0, SMC_KSLF0, SMC_MAXERR0, SMC_KSLIDE1, SMC_KSLF1, SMC_MAXERR1, COEFFPLL_SMC, 通过调整这些参数, 使 滑模观测器估算角度平滑。
		磁链观测器控制方式需要调试的参数在 drive_parameters_define.h 文件中,包含 FLIT_COEFF, COMPCOF_UPLIMIT, COEFFPLL_FLUX,通过调整这些参数,使磁链观测器估算角度平滑。
		MRAS 算法需要调试的参数在 drive_parameters_define.h 文件中, 包含 ALPHA_COEFF, BETA_COEFF, 通过调整这些参数, 使 MRAS 无传感算法估算角度平滑。

表 5-1 无感 FOC 无法进入闭环的原因及对应解决方法

序号	原因	解决方法
3	开环 I/F 参数设 置不合适,无法 正常启动	在 drive_parameters_define.h 文件中打开 OPEN_LOOP 宏定义, 屏蔽 CLOSE_LOOP 宏定义, 在开环模式下确定开环电机可以正常到达设定的目标转速 (60*OPEN_LOOP_SPEED_HZ)。开环电流和开环时间需要足够使电机运行至 设定转速。
4	预定位参数设置 过小,无法正常 预定位	预定位电流和预定位时间设置足够,保证可以正常拖动电机预定位。
5	负载过大,开环 运行正常但无法 切入闭环	 增加 SPD_SMOOTH_CUR 宏定义,增加切换时刻的平滑电流进行顺利过渡, 需根据负载情况进行调试,设置过大切换时候出现加速现象,设置过小切换会停止 或减速。 2.增加速度环 PI 参数,以提高速度环响应速度。

6 缩略语

表 6-1	术语缩写
-------	------

缩写	全称	描述
BLDC	Brushless Direct Current Motor	直流无刷电机
PMSM	Permanent Magnet Synchronous Motor	永磁同步电机
FOC	Field Oriented Control	磁场定向控制
PWDT	Pulse Width Detect Timer	脉冲宽度检测定时器

7 参考资源

可参考的资源有:

资源类型	资源名	资源简介
文档	AC781x入门指南	AC781x 系列 MCU 通用开发板简介
文档	AC780x 入门指南	AC780x 系列 MCU 通用开发板简介
文档	ATC_AC78xx _Motor_App_Development_Guide_CH	AC78xx 电机 App 介绍文档
原理图	ac7811_lqfp80_motor_v2.3	AC781x 电机 demo 板硬件原理图
原理图	ac7801_lqfp48_motor_v1.1	AC780x 电机 demo 板硬件原理图
原理图	ac7840x_64pin_motor_demo_v1.0	AC7840x 电机 demo 板硬件原理图
文档	AC78xx Motor Driver_v1.1	AC78xx 系列电机 App 代码说明文档
文档	ATC 电机主要参数介绍及测量方法说明	电机主要参数介绍及测量方法说明
软件	Motor Studio	ATC 电机调试上位机

表 7-1 相关资源简介